PUBLIC NOTICE LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY (LDEQ) TERRA MISSISSIPPI NITROGEN, INC. - DONALDSONVILLE PLANT, AI 2245 PROPOSED NOX EMISSION REDUCTION CREDITS (ERC)

Terra Mississippi Nitrogen, Inc., 39139 Highway 18 West in Donaldsonville, Ascension Parish, LA 70346, Air Permit Number 0180-00009-V0, proposes to add emission reductions credits (ERC) of NOx to the LDEQ Emission Reductions Credits Banking System. This action is due to the permanent shutdown of Urea Boiler No. 1 and Urea Boiler No. 2 at the Donaldsonville Plant, an ammonia fertilizer manufacturing facility, on December 24, 2004.

The total estimated emission reductions, in tons per year (TPY) are as follows:

-	Urea Boiler No. 1	Urea Boiler No. 2
Allowable emissions before reduction:	173.4	150.8
Actual emissions (2001/2002 average) (§607.C.2):	127.5	121.5
Baseline emissions (§607.C.4):	101.41	97.93
Allowable emissions after reduction (§607.C.5):	0.00	0.00
Surplus emission reduction (§607.C.6):	101.41	97.93
Adjustments for netting (§607.D):	-0	-0
Total ERC*:	101.41	97.93
Ozone Season ERC	27.36	27.36
Non-ozone Season ERC	74.05	70.57

^{*} Total ERC = ozone season ERC + non-ozone season ERC.

The Department is hereby providing notice of its determination that the reductions are surplus, permanent, quantifiable, and enforceable in accordance with LAC 33:III.Chapter 6 as of the date of this notice.

Written comments, written requests for a public hearing, or written requests for notification of the final decision regarding this proposed emissions reduction may be submitted to Ms. Soumaya Ghosn at LDEQ, Public Participation Group, P.O. Box 4313, Baton Rouge, LA 70821-4313. Written comments and/or written requests must be received by 12:30 p.m., Monday, April 19, 2010. Written comments will be considered prior to a final permit decision.

If LDEQ finds a significant degree of public interest, a public hearing will be held. LDEQ will send notification of the final permit decision to the applicant and to each person who has submitted written comments or a written request for notification of the final decision.

The ERC application, draft certificate, and Analysis of Validity of Emission Reductions as ERC are available for review at the LDEQ, Public Records Center, Room 127, 602 North 5th Street, Baton Rouge, LA. Viewing hours are from 8:00 a.m. to 4:30 p.m., Monday through Friday (except holidays). The available information can also be accessed electronically on the Electronic Document Management System (EDMS) on the DEQ public website at www.deq.louisiana.gov.

Additional copies may be reviewed at the Ascension Parish Library-Donaldsonville Branch, 500 Mississippi Street, Donaldsonville, LA 70346.

Inquiries or requests for additional information regarding this permit action should be directed to John H. Dyer, LDEQ, Air Permits Division, P.O. Box 4313, Baton Rouge, LA 70821-4313, phone (225) 219-3005.

Persons wishing to be included on the LDEQ permit public notice mailing list or for other public participation related questions should contact the Public Participation Group in writing at LDEQ, P.O. Box 4313, Baton Rouge, LA 70821-4313, by email at deqmailtistrequest@la.gov or contact the LDEQ Customer Service Center at (225) 219-LDEQ (219-5337).

Permit public notices including electronic access draft certificate, and Analysis of Validity of Emission Reductions as ERC can be viewed at the LDEQ permits public notice webpage at www.deq.louisiana.gov/apps/pubNotice/default.asp and general information related to the public participation in permitting activities can be viewed at www.deq.louisiana.gov/portal/tabid/2198/Default.aspx.

Alternatively, individuals may elect to receive the permit public notices via email by subscribing to the LDEQ permits public notice List Server at www.doa.louisiana.gov/oes/listservpage/ldeq pn listserv.htm.

All correspondence should specify AI Number 2245, Permit Number 0180-00009-V0, and Activity Number PER20050012.

Scheduled publication date: Thursday, March 18, 2010

BOBBY JINDAL GOVERNOR

PEGGY M. HATCH SECRETARY

State of Louisiana

DEPARTMENT OF ENVIRONMENTAL QUALITY ENVIRONMENTAL SERVICES

Certified Mail No.

Agency Interest (AI) No.: 2245 Activity No.: PER20050012

Richard Bartley Facility Manager Terra Mississippi Nitrogen, Inc. P.O. Box 310 Donaldsonville, LA 70346-0310

RE: NO_x Emission Reduction Credits, Terra Mississippi Nitrogen Inc. - Donaldsonville Facility, Terra Mississippi Nitrogen Inc., Donaldsonville, Ascension Parish, Louisiana

Dear Mr. Bartley:

Please find enclosed your Emission Reduction Credit (ERC) Certificate to reflect the creditable NO_x reductions generated by permanently shutting down Urea Boiler No. 1 (EIQ No. ID-30) and Urea Boiler No. 2 (EIQ No. ID-32) at the Donaldsonville Plant.

A notice requesting public comment on the ERC Certificate was published in both *The Advocate* and the *Gonzales Weekly* on March xx, 2010. A copy of the public notice was mailed to concerned citizens listed in the Office of Environmental Services Public Notice Mailing List on March xx, 2010. XX comments were received.

If you have any questions, please call John H. Dyer of the Air Permits Division at (225) 219-3005.

Sincerely,

AZSACIORE

CSN:JHD

Jellic Nottal

Louisiana Department of Environmental Quality Emission Reduction Credit Certificate

Item Number:

2245PER20050012

Owner:

Terra Mississippi Nitrogen Inc

Phone number:

(225) 474-4650

Company

P.O. Box 310

Address:

Donaldsonville, Louisiana 70346-0310

EMISSION REDUCTION INFORMATION

Physical

Location:

39139 Highway 18 W, Donaldsonville, Ascension Parish, Louisiana

Method of ERC creation: Permanent Shutdown of Urea Boiler No. 1 (EIQ ID-30) and Urea Boiler No. 1

(EIQ ID-32) at the Donaldsonville Plant (Activity Number PER200500012)

Pollutant: NO_x (tons)

O₃ NO_x Generated 54.72 Non O₃ NO_x Generated 144.62

TOTAL NO_x Generated 199.34

Date of emission reduction: December 24, 2004

Permit Number: 0180-00009-V0

Assistant Secretary

Date

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

DONALDSONVILLE PLANT TERRA MISSISSIPPI NITROGEN, INC DONALDSONVILLE, ASCENSION PARISH, LOUISIANA AI NO. 2245, ACTIVITY NO. 20050012

Background

Terra Mississippi Nitrogen, Inc. (Terra), a wholly owned subsidiary of Terra Industries, owns and operates an anhydrous ammonia plant located at 39139 Highway 18 West, Donaldsonville, in Ascension Parish, Louisiana. Previously, the site was owned and operated as two facilities: 1) a melamine plant owned by Melamine Chemicals, a subsidiary of Borden Chemicals, and 2) two ammonia plants and a urea plant owned by Triad Nitrogen. Triad Nitrogen acquired the melamine plant in 2003, and the two adjacent facilities came under common control. Terra purchased the Donaldsonville facility on December 21, 2004.

Shortly after purchasing the Donaldsonville Plant, Terra shut down the melamine unit, the urea unit, and one of the two anhydrous ammonia units. The melamine facility had been operating under AI 2398, Permit No. 0180-00005-V0, issued November 28, 2001, and administratively amended May 22, 2003. The ammonia and urea units were operating under AI 2245, Permit No. 0180-00009-V0, issued January 11, 2001.

From the shutdown of the ammonia unit (Ammonia Plant No. A-1), Terra is proposing to transfer NO_x emission credits generated by Ammonia No.1 Primary Reformer (Emission Point No. ID-06). From the shutdown of the urea unit, Terra is proposing to transfer NO_x emission credits generated by Urea Boiler No. 1 (Emission Point No. ID-30) and Urea Boiler No. 2 (Emission Point No. ID-32). An analysis of the validity of NO_x emission credits generated by the reformer has already been issued and was public noticed on April 7, $2005.^4$ At that time, 262.34 tons of NO_x emission credits were transferred, leaving a balance of 939.22 tons (901.5 non-O₃ season + 37.72 O₃ season) for the No. 1 Primary Reformer (EPN ID-06). The department examined this analysis to determine if an update was warranted and confirmed its validity. Therefore, this analysis pertains to the Urea Plant boilers, ID-30 and ID-32, only.

Urea Boilers Nos. 1 and 2 were natural gas-fired steam boilers each with a maximum rating of 149 MM BTU/hr. The boilers were constructed prior to 1984 and were not subject to any federal or state regulations for emissions of NO_x at the time of their shutdown on December 24, 2004.

Summary

A portion of the resultant NO_x emission decrease is surplus, permanent, quantifiable, and enforceable in accordance with LAC 33:III.Chapter 6-Regulations on Control of Emissions Through the Use of Emission Reduction Credits Banking. Accordingly, these reductions qualify as Emissions Reduction Credits (ERC). Amounts in the following table are given in tons per year (TPY).

¹ See EDMS Document No. 32721306.

² See EDMS Document Nos. 21679020 and 26935829.

³ See EDMS Document No. 18878219.

⁴ See EDMS Document Nos. 32772439 and 32772441.

⁵ See EDMS Document No. 32909458.

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

DONALDSONVILLE PLANT TERRA MISSISSIPPI NITROGEN, INC DONALDSONVILLE, ASCENSION PARISH, LOUISIANA AI NO. 2245, ACTIVITY NO. 20050012

Total NO_X ERC:

	Urea Boiler No.1	Urea Boiler No. 2
Allowable Emissions Before Reduction: ⁶	173.4	150.8
Actual Emissions: (O ₃ season + non-O ₃ season) ⁷	(53.45 +74.05) = 127.5	(50.93 + 70.57) = 121.5
Adjusted allowable emissions (§607.C.3): (O ₃ season + non-O ₃ season) season	(27.36 + 100.71) = 128.07	(27.36 + 87.59) = 114.95
Baseline emissions (§607.C.4): (O ₃ season + non-O ₃ season) ⁸	(27.36 + 74.05) = 101.41	(27.36 +70.57) = 97.93
Allowable emissions after reduction (§607.C.5):	0.00	0.00
Surplus emission reduction (§607.C.6):	101.41	97.93
Adjustments for netting (§607.D):	-0	-0
Total ERC:	101.41	97.93

Louisiana promulgated a NO_X Reasonably Available Control Technology (RACT) rule (LAC 33:III.Chapter 22) on March 20, 2002. Beginning May 1, 2005, Chapter 22 required sources to reduce NO_X emissions during the five month ozone season, May 1 through September 30, inclusively. Typically, a stationary source reduces emissions below the baseline to generate surplus emission reduction credits. Due to the five month applicability of Chapter 22, the allowable emission limitation for a stationary source could potentially have two values, one for the five month ozone season, and another for the sevenmonth non-ozone season.

Thus, baseline emissions for a given stationary source, which are used to determine the surplus emission reduction (§607.C.6), could have two different values. In order to accurately determine the amount of ERC that can be used as offsets for nonattainment new source review (NNSR) permitting, baseline emissions and surplus ERC must be determined for the two time periods. Total NO_X ERC for any annual time period will consist of the ERC from the five month ozone season and the ERC from the seven month non-ozone season. Offset requirements for new sources derive from Section 173(a)(1)(A) of the Clean Air Act (CAA), which concerns "total" emissions and does not address the use of emission offsets for nonattainment permitting over periods of less than one year. Therefore, the NO_X ERC to be used in all NNSR permitting under LAC 33:III.504 must be determined by adding the ERC from the ozone season and the non-ozone season.

With respect to all offsets under Chapter 5 and all ERC under Chapter 6, the total NO_X emission increases during the ozone season must be offset by NO_X ERC from the ozone season. Non-ozone season NO_X

⁶ Permit No. 0180-00009-V0 issued 1/11/01.

Average of 2001 and 2002 actual emissions (§607.C.2).

⁸ Baseline emissions shall be the lower of actual emissions or adjusted allowable emissions when the design value for the nonattainment area is not above the NAAQS for ozone (§607.C.4.a.ii); for NOx, baseline emissions have two values, one for ozone season and one for non-ozone season.

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

DONALDSONVILLE PLANT TERRA MISSISSIPPI NITROGEN, INC DONALDSONVILLE, ASCENSION PARISH, LOUISIANA AI NO. 2245, ACTIVITY NO. 20050012

increases may be met by either ozone or non-ozone NO_X ERC. The annual NO_X increase must be offset by the total combination of ozone and non-ozone season surplus NO_X emission reduction credits. See 67 FR 48093-48094 (July 23, 2002).

Ozone (O₃) season NO_x ERC:

	Urea Boiler No.1	Urea Boiler No. 2
Allowable Emissions Before Reduction:	72.69 ⁹	63.2110
Actual Emissions:	53.45	50.93
Adjusted allowable emissions (§607.C.3):	27.36	27.36
Baseline emissions (§607.C.4):	27.36	27.36
Allowable emissions after reduction (§607.C.5):	0.00	0.00
Surplus emission reduction (§607.C.6):	27.36	27.36
Adjustments for netting (§607.D):	-0	-0
O ₃ season ERC:	27.36	27.36

Non-ozone (non-O₃) season NO_x ERC:

	Urea Boiler No.1	Urea Boiler No. 2
Allowable Emissions Before Reduction:	100.7111	87.59 ¹²
Actual Emissions:	74.05	70.57
Adjusted allowable emissions (§607.C.3):	100.71	87.59
Baseline emissions (§607.C.4):	74.05	70.57
Allowable emissions after reduction (§607.C.5):	0.00	0.00
Surplus emission reduction (§607.C.6):	74.05	70.57
Adjustments for netting (§607.D):	-0	-0
Non-O ₃ season ERC:	74.05	70.57

Analysis of validity

Timeliness

Per §615.A, all applications for banking emission reductions shall be submitted by March 31 following the year in which the reductions occurred. The Urea Plant Boiler No.1 and Boiler No. 2 were shut down on

⁹ 173.4 * 153/365

¹⁰ 150.8 * 153/365

^{11 173.4 * 212/365}

^{12 150.8 * 212/365}

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

DONALDSONVILLE PLANT TERRA MISSISSIPPI NITROGEN, INC DONALDSONVILLE, ASCENSION PARISH, LOUISIANA AI NO. 2245, ACTIVITY NO. 20050012

December 24, 2004. The application was dated March 24, 2005. 13

Emissions reductions can be recognized as ERC only if they are determined to be surplus, permanent, quantifiable, and enforceable. Each criterion is addressed below.

Surplus

Procedures for calculating the surplus emission reduction are outlined in §607.C & D.

- 1. The design value for the nonattainment area is below the 1-hour national ambient air quality standard (NAAQS) for ozone. Per §607.C.4.ii, if the design value for the nonattainment area is not above the 1-hour national ambient air quality standard (NAAQS) for ozone, the department shall compare the actual emissions with the adjusted allowable emissions in order to determine baseline emissions.
- 2. Calculate actual emissions during the baseline period. Actual emissions during the baseline period of 2001 and 2002 claimed in the Terra Urea Plant ERC Bank application were checked against the department's Emission Inventory database. NO_x emissions during the baseline period were calculated to be 127.5 TPY for Boiler No. 1 (53.45 tons-O₃ season + 74.05 tons-non O₃ season) and 121.5 TPY for Boiler No. 2 (50.93 tons-O₃ season + 70.57 tons-non O₃ season).
- 3. Calculate adjusted allowable emissions. Allowable emissions shall be adjusted to account for all new or revised federal or state regulations adopted that will require, or would have required, all or a portion of the emission reductions that comprise the ERC application. At the time of shutdown of Urea Boilers 1 and 2, the plant was operating under Permit No. 0180-00009-V0 issued January 11, 2001. This permit was also in effect during the baseline period of 2001-2002. The permit had no requirements for emissions of NO_x that were applicable to the urea steam boilers. In addition, the boilers, which were constructed prior to 1984 and had not since been modified or reconstructed, were not subject to any federal New Source Performance Standard (NSPS). The department examined the federal regulations and found no new or modified requirements that would now be applicable to Boilers 1 and 2.

With regard to state regulations, there were no NO_x regulations applicable to natural gas-fired boilers at the time of the reduction. However, LAC 33:III.Chapter 22 was promulgated on March 20, 2002, and had an effective date of May 1, 2005. §2201.D.1 sets NO_x emissions limits for stationary gas turbines and industrial boilers. Boilers 1 and 2 were shut down in 2004, and Terra would have had to install low NO_x burners or other controls to meet the new NO_x RACT regulations by the May 1, 2005 compliance date. Therefore, allowable NO_x emissions during the 5-month ozone season have to be adjusted for compliance with the LAC 33:III.Chapter 22 standard of 0.10 pounds NO_x/MM Btu for industrial boilers with a rated heat input ≥ 80 MM Btu/hr. The heat input of 149 MM Btu/hr for each boiler during the 2001 and 2002 ozone seasons was multiplied by the factor of 0.10 lb/MM Btu to calculate what would have been allowed during the ozone season beyond May 1, 2005. Adjusted allowable ozone season NO_x emissions for each boiler equal 27.36 t ons. F or non-ozone season, since there are no new or revised NO_x regulations adopted since the baseline period that affect Boilers 1 and 2, adjusted allowable emissions for this period equal permitted values. Total adjusted allowable NO_x emissions for the baseline period are calculated to be 128.07 TPY for Boiler No. 1 (27.36 tons-O₃ season + 100.71 tons-non O₃ season) and

¹³ See EDMS Document No. 32756610.

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL OUALITY

DONALDSONVILLE PLANT TERRA MISSISSIPPI NITROGEN, INC DONALDSONVILLE, ASCENSION PARISH, LOUISIANA AI NO. 2245, ACTIVITY NO. 20050012

114.95 TPY for Boiler No. 2 (27.36 tons-O₃ season + 87.59 tons-non O₃ season).

- 4. Quantify baseline emissions. Per §607.C.4.a.ii, if the design value is not above the NAAQS for ozone, baseline emissions shall be the lower of actual emissions (step 2 above) or adjusted allowable emissions determined in accordance with §607.C.3 (step 3 above). In this case, adjusted allowable emissions are the limiting factors for ozone season and actual emissions are the limiting factors for non-ozone season for each boiler. Baseline emissions for Boiler No. 1 total 101.41 TPY (27.36 tons-O₃ season + 74.05 tons-non O₃ season). Baseline emissions for Boiler No. 2 total 97.93 TPY (27.36 tons-O₃ season + 70.57 tons-non O₃ season).
- 5. Calculate allowable emissions after the reductions occurred. The Urea Plant, including the steam boilers, was permanently shut down; thus, allowable emissions are zero.
- 6. Calculate the surplus emission reduction by subtracting the allowable emissions after the reduction occurred from the baseline emissions.

```
Boiler No. 1: 101.41 \text{ TPY} - 0.00 \text{ TPY} = 101.41 \text{ TPY} (27.36 O<sub>3</sub> season + 74.05 non-O<sub>3</sub> season)
Boiler No. 2: 97.93 \text{ TPY} - 0.00 \text{ TPY} = 97.93 \text{ TPY} (27.36 O<sub>3</sub> season + 70.57 non-O<sub>3</sub> season)
```

7. Finally, adjust for netting (§607.D). Emission reductions used in a netting analysis (i.e., to determine the net emissions increase as defined in LAC 33:III.504 or 509, as appropriate) that prevented the increase from being considered "significant" are not eligible for use as offsets. The quantity of emission reductions utilized to "net out" shall not be considered creditable. There is zero adjustment for netting, as the emission reductions were not used in a netting analysis.

```
Boiler No. 1: 101.41 \text{ TPY} - 0.00 \text{ TPY} = 101.41 \text{ TPY} (27.36 O<sub>3</sub> season + 74.05 non-O<sub>3</sub> season)
Boiler No. 2: 97.93 \text{ TPY} - 0.00 \text{ TPY} = 97.93 \text{ TPY} (27.36 O<sub>3</sub> season + 70.57 non-O<sub>3</sub> season)
```

Permanent

The reductions are permanent because the sources Urea Boiler No. 1 and Urea Boiler No. 2 were shut down in December 2004, and then deleted as emission sources from the Donaldsonville Plant Title V Permit No. 0180-00009-V1 issued June 6, 2009.

Quantifiable

The emissions from the plant were calculated using approved EPA methods, EPA emission factors, factors developed through stack tests performed in accordance with approved EPA methods, process data, and production data.

Enforceable

Finally, the reductions are enforceable via Permit No. 0180-00009-V1 issued June 6, 2009, in which the emission sources Urea Boiler No. 1 (Emission Point No. ID-30) and Urea Boiler No. 2 (Emission Point No. ID-32) were deleted from the Donaldsonville facility permit. Further operation of these sources would constitute operation without a permit in violation of Louisiana environmental regulations and the Louisiana Environmental Quality Act.

Terra Industries Inc 600 Foorth Street P.O. Box 6000

Sioux City, IA 51102-6000 Telephone: (712) 277-1340

March 24, 2005

Mr. Keith Jordon Louisiana Department of Environmental Quality Office of Environmental Services P.O. Box 4313 Baton Rouge, LA 70821-4313

Re: Emission Reduction Credit Application

Amendment to Previous ERC Application submitted Feb. 21, 2005

Agency Interest # 2245 Permit No. 0180-00009-VO

Former Triad Nitrogen, LLC Facility - Donaldsonville, Louisiana

Dcar Mr. Jordon:

As you discussed with Mr. Jim Schellhorn of Terra Industries and Mr. Ken Faulkner of FC&E Engineering during the March 16, 2005 meeting, attached is an amended Emissions Reduction Credit Application submitted for the Donaldsonville facility. As stated in our letter to your office dated February 21, 2005, Terra's plans at this time for the Donaldsonville facility do not involve operation of the two ammonia plants or the urea manufacturing plant. As such, most of the sources at these plants that emit NOx or VOC emissions will be shutdown permanently. Therefore, the attached application includes the affected emission points and denotes the ERCs requested for each emission point. Since the Donaldsonville facility is located in Ascension Parish which is in the Baton Rouge Nonattainment Area, the facility is subject to LAC 33:III. Chapter 22. Consequently, Terra has calculated the emission credits for both the ozone season and the non-ozone season. In summary, Terra is requesting to bank the following emission reductions:

MAINFILE

original to July Older

Total NOx Credits: 2,159.91 tons

> Ozone Season: 383.79 tons Non-Ozone Season: 1,776.12 tons

Total VOC Credits: 76.81 tons

> Ozone Season: 12.95 tons Non-Ozone Season: 63.86 tons

The attached application for emission credits is specific to air permit #0180-00009-VO. Should you have any questions, please contact Jim Schellhorn, Terra's Director of EH&S at (918) 266-9653, or Ken Faulkner or FC&E Engineering, LLC at (601) 259-5217.

Sincerely,

Richard Sanders, Jr.

Vice President, Manufacturing

attachment

LDEQ-EDMS Document 32756610, Page 2 of 5

Department of Environmental Quality Office of Air Quality and Radiation Protection P.O. Box 82135 Baton Rouge, LA 70884-2135 (504) 755-0195

LOUISIANA

ERC BANK APPLICATION VOLATILE ORGANIC COMPOUNDS

COMPANY: Terra Miss February 21, 2005 ERC Ap	rissippi Nitrogen, Inc. (AI#2245) Amend oplication submittal to LDEQ	iment to
LOCATION: Dona	ldsonville Ascen	nsion .sh)
39041 Hwy 18 West, Do	naldsonville, LA 70346 (Physical Location)	
MAILING ADDRESS: P.O. B	Donaldsonville, (City) (S	LA 70346 State (Zip Code)
2,159.91 TPY (NOx Credits) 76.81 TPY (VOC Credits) (ERCs deposited-TPY)	N/A N/ (ERCs relied upon for netting-TPY) (ERCs relied upon	
12/24/04 (Date of Emissions Increase/Decrease		TPY (NOx Credits) PY (VOC Credits) for objects-Tri)
Industries, Inc., purchased Chemical Corporation. As a pathe urea plant will be per	COMMENTS Inc. (TMNI), an indirect wholly owned so the Donaldsonville facility on Dec. 21, 200 art of Terra's plan for the facility, the two manently shutdown. Terra would like to ban or either future use or sale by the company.	04 from Mississippi
	AFFECTED PERMIT	
Permit Number: 0180-0000	9-VO Facility: Formerly Triad Nitroo Donaldsonville Facility	gen, LLC
Affected EIQ Source ID ID-12, ID-30, ID-32, ID-	No.(s): Emission Points ID-02, ID-04	I, ID-06, ID-08,
and calculations is true	he information contained in this ERC : and accurate to the best of my knowle	edge. 18
Richard Sanders, Jr. V	rice-President, Manufacturing (71) (Tell) (Tell) (Tell) (Tell) (Tell) (Date)	12) 277-1370 1 Tephone Number) 23 23 25 25

Emission Reduction Credit Summary Table NOx Emissions Summary - A1 & Urea

Facility Identification

Name: Terra Mississippi Nitrogen, Inc.

Former Triad Nitrogen, LLC - Ammonia Plant #1 (A1 Plant) & Urea Plant

Location: 39041 Hwy 18 West

Donaldsonville, LA 70346

Designation (Identification) Number: Al 2245 - Air Permit # 0180-00009-VO

Affected Units	A1 - Ammonia Reformer	Urea Boilers #1 & #2
Emission Point Nos.	ID-06	ID-30 & ID-32
Unit Size (MMBtu/hr)	824.33	149.00 each
Curtailed/Permanently Shutdown		
(CURTL/PShtDwn)	Yes (PShtDwn)	Yes (PShtDwn)
Total Future NOx Emissions (TPY)	0.00	0.00
* 2001 NOx Emissions (TPY)	987.00	279.00
* 2002 NOx Emissions (TPY)	1416.11	229.00
Two Year Average (TPY) / (lb/hr)	1201.56/274.32	254/57.99
** Ozone Season (Tons) / (lb/hr)	208.46/113.54	68,35/37.23
** Non-Ozone Season (Tons) /		
(lb/hr)	993.10/390,33	185.65/72.98
RACT Rate Limit (lb/MMBtu)	0.23	0.1
Allowable Emissions Ozone		
Season (Tons) / (lb/hr)	348.10/189.60	54.71/29.80
Ozone Season Banked NOx		
Emissions (Tons)	208.46	54.71
Allowable Emission Rate Non-		•
Ozone Season (Tons) / (lb/hr)	1078.23/424.50	269.75/106.20
Non-Ozone Season Banked Nox		×
Emissions (Tons)	993.1	185.65
Total Banked Emissions (TPY)	1201.56	240.36

^{*} Emissions were taken from the 2001/2002 EIS reports.

^{**} Emissions were calculated from the total fuel used during the Ozone Season.

LDEQ-EDMS Document 46905035, Page 206 of 998

LDEQ-EDMS Document 32756610, Page 4 of 5

Emission Reduction Credit Summary Table NOx Emissions Summary - A2 Plant

Facility Identification

Name: Terra Mississippi Nitrogen, Inc.

Former Triad Nitrogen, LLC - Ammonia Plant #2 (A2 Plant)

Location: 39041 Hwy 18 West

Donaldsonville, LA 70346

Designation (Identification) Number: Al 2245 - Air Permit # 0180-00009-VO

Affected Units	A2 - Ammonia Reformer
Emission Point Nos.	ID-02
Unit Size (MMBtu/hr)	818.00
Curtailed/Permanently Shutdown (CURTL/PShtDwn)	Yes (PShtDwn)
Total Future NOx Emissions (TPY)	0.00
* 2001 NOx Emissions (TPY)	703.98
* 2002 NOx Emissions (TPY)	732.00
Two Year Average (TPY) / (lb/hr)	717.99 / 323.03
** Ozone Season (Tons) / (lb/hr)	120.62 / 358.99
** Non-Ozone Season (Tons) / (lb/hr)	597.37 / 316.63
RACT Rate Limit (lb/MMBtu)	0.23
Allowable Emissions Ozone Season (Tons) / (lb/hr)	345.42 / 188.14
Ozone Season Banked NOx Emissions (Tons)	120.62
Allowable Emission Rate Non- Ozone Season (Tons) / (lb/hr)	820,00 / 320.81
Non-Ozone Season Banked Nox Emissions (Tons)	597.37
Total Banked Emissions (TPY)	717.99

^{*} Emissions were taken from the 2001/2002 EIS reports.

^{**} Emissions were calculated from the total fuel used during the Ozone Season.

Emission Reduction Credit Summary Table VOC Emissions Summary - A1, A2, & Urea Plants

Facility Identification

Terra Mississippi Nitrogen, Inc. Former Triad Nitrogen, LLC - Ammonia Plant #1 (A1 Plant), Ammonia Plant #2 (A2 Plant) & Urea Plant

: - .

Location: 39041 Hwy 18 West Donaldsonville, LA 70346

Designation (Identification) Number: Al 2245 - Air Permit # 0180-00609-VO

Affected Units	A2 - Ammonia Reformer	A2 CO2 Regenerator	A1 - Ammonta Reformer	A1 Steam Condensate Stripper	A1 CO2 Recensitor	A1 Steam Condensate Stringer A1 CO2 Renewanter (Inex Bollers #1 2 #2	Formalda hodo Tank
Emission Point Nos.	ID-02	ID-04		1D-08	ID-12	ID-30 & ID-32	ID-50
Unit Size (Capacity as specified)	818 MMBtu/hr	1,800 tons/day	824.33 MMBtu/hr	1,376.6 tons/day	1,376.6 tons/day	1,376.6 tons/day 149.00 MMBtu/hr carch	26 128 gals
Curtalled/Permanently Shutdown							200
(CURTL/PShtDwn)	Yes (PShIDwn)	Yes (PShtDwn)	Yes (PShtDwn)	Yes (PShtDwn)	Yes (PShIDwn)	Yes (PShtDwn)	Yes (PShtDwn)
Total Future VOC Emissions (TPY)	0.00	0.00	0.00	0.00	00.0	0.00	000
· 2001 VOC Emissions (TPY)	2.63	19.85	4.00	11.00	36.00	2.00	0.01
* 2001 Methanol Emissions (TPY)	0.00	19.85	0.00	11.00	36.00	0.00	000
* 2001 Formaldehyde Emissions							
(TPY)	0.00	00:00	0.00	0.00	00.00	0.00	0.01
· 2002 VOC Emissions (TPY)	3.00	23.00	5.00	12.68	29.00	8.00	0.01
* 2002 Methanol Emissions (TPY)	0.00	23.00	0.00	12.86	29.00	00.00	000
* 2002 Formaldehyde Emissions							
(TPY)	0.00	00.00	00:00	0.00	00:00	00.00	0.01
Two Year Average (TPY) / (Ib/hr)	2.815 / 1.267	21,425 / 9,639	4.500 / 1.027	11.830 / 2.701	32.500 / 7.420	4.000 / 0.913	0.010 / 0.002
" Ozone Season (Tons) / (Ib/hr)	0.473 / 1,408	3,599 / 10,711	0.756 / 0.412	1.987 / 1.082	5.460 / 2,974	0.672 / 0.366	0.002 / 0.0003
"Non-Ozone Season (Tons) /							
(Ib/hr)	2.342 / 1.241	17.828 / 9.449	3.473 / 1.365	9.843 / 3.869	27.040 / 10.629	3.328 / 1.308	0.008 / 0.0017
RACT Rate Limit (Ib/MMBtu)	N/A for VOCs	N/A for VOCs	NA for VOCs	N/A for VOCs	N/A for VOCs	N/A for VOCs	N/A for VOCs
Allowable Emissions Ozone							
Season (Tons) / (Ib/hr)	2.196 / 1.440	20.896 / 12.410	2.600 / 1.720	7.329 / 4.23	21.283 / 24.000	3.141 / 2.060	0.004 / 0.002
Ozone Season Banked VOC							
Emissions (Tons)	0.473	3.599	0.758	1.987	5.46	0.672	0.002
Allowable Emission Rate Non-							
Ozone Season (Tons) / (Ib/hr)	3.074 / 1.440	29.254 / 12.410	3.64 / 1.720	10,261 / 4.23	29.797 / 24.000	4.398 / 2.060	0.006 / 0.002
Non-Ozone Season Banked VOC							
Emissions (Tons)	2.342	17.826	3.473	9.843	27.04	3,328	0.008
SubTotal Banked Emissions (TPY)	2.615	21,425	4.229	11,830	32.500	4 000	0.010
Total Banked VOC Emissions (TPY)				76,81			

Emissions were taken from the 2001/2002 EtS reports. VOC emissions are the total of the speciated compounds listed. In the
case where no available data could provide speciated organic compounds (such as with fuel burning sources), the VOC emissions were simply totaled.

^{**} Emissions were calculated from the total fuel used or the Ammonia Produced during the Ozone Season.

PUBLIC NOTICE LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY (LDEQ) DSM COPOLYMER, ADDIS PLANT, AI 2519 PROPOSED NOX and VOC EMISSION REDUCTION CREDITS (ERC)

DSM Copolymer, 9263 Highway 1 South in Addis, West Baton Rouge Parish, LA 70710, Air Permit Number 3120-00004-V0, proposes to add emission reductions credits (ERC) of NOx and VOC) to the LDEQ Emission Reductions Credits Banking System. This action is due to the permanent shutdown of Boiler No. 1 at the Addis Plant, a synthetic rubber manufacturing plant, on October 11, 2003.

The total estimated emission reductions, in tons per year (TPY) are as follows:

	NOx	VOC
Allowable emissions before reduction:	70.00	2.90
Actual emissions (2001/2002 average) (§607.C.2):	49.50	2.00
Adjusted allowable emissions (§607.C.3):	62.51	2.90
Baseline emissions (§607.C.4):	49.50	2.00
Allowable emissions after reduction (§607.C.5):	0.00	0.00
Surplus emission reduction (§607.C.6):	49.50	2.00
Adjustments for netting (§607.D):	-0	-0
Total ERC*:	49.50	2.00
Ozone Season ERC	20.75	
Non-ozone Season ERC	28.75	

^{*} Total ERC = ozone season ERC + non-ozone season ERC.

The Department is hereby providing notice of its determination that the reductions are surplus, permanent, quantifiable, and enforceable in accordance with LAC 33:III.Chapter 6 as of the date of this notice.

Written comments, written requests for a public hearing, or written requests for notification of the final decision regarding this proposed emissions reduction may be submitted to Ms. Soumaya Ghosn at LDEQ, Public Participation Group, P.O. Box 4313, Baton Rouge, LA 70821-4313. Written comments and/or written requests must be received by 12:30 p.m., Monday, April 19, 2010. Written comments will be considered prior to a final permit decision.

If LDEQ finds a significant degree of public interest, a public hearing will be held. LDEQ will send notification of the final permit decision to the applicant and to each person who has submitted written comments or a written request for notification of the final decision.

The ERC application, draft certificates, and Analysis of Validity of Emission Reductions as ERC are available for review at the LDEQ, Public Records Center, Room 127, 602 North 5th Street, Baton Rouge, LA. Viewing hours are from 8:00 a.m. to 4:30 p.m., Monday through Friday (except holidays). The available information can also be accessed electronically on the Electronic Document Management System (EDMS) on the DEQ public website at www.deq.louisiana.gov.

Additional copies may be reviewed at the West Baton Rouge Parish Library-Headquarters, 830 N. Alexander Avenue, Port Allen, LA 70767.

Inquiries or requests for additional information regarding this permit action should be directed to John H. Dyer, LDEQ, Air Permits Division, P.O. Box 4313, Baton Rouge, LA 70821-4313, phone (225) 219-3005.

Persons wishing to be included on the LDEQ permit public notice mailing list or for other public participation related questions should contact the Public Participation Group in writing at LDEQ, P.O. Box 4313, Baton Rouge, LA 70821-4313, by email at deqmailtistrequest@la.gov or contact the LDEQ Customer Service Center at (225) 219-LDEQ (219-5337).

Permit public notices including electronic access to the draft certificate, and Analysis of Validity of Emission can be viewed at the LDEQ permits public notice webpage at www.deq.louisiana.gov/apps/pubNotice/default.asp and general information related to the public participation in permitting activities can be viewed at www.deq.louisiana.gov/portal/tabid/2198/Default.aspx.

Alternatively, individuals may elect to receive the permit public notices via email by subscribing to the LDEQ permits public notice List Server at www.doa.louisiana.gov/oes/listservpage/ldeq pn listserv.htm.

All correspondence should specify AI Number 2519, Permit Number 3120-00004-03, and Activity Number PER20040001.

Scheduled publication date: Thursday, March 18, 2010

BOBBY JINUAL GOVERNOR

PEGGY M. HATCH SECRETARY

State of Louisiana

DEPARTMENT OF ENVIRONMENTAL QUALITY ENVIRONMENTAL SERVICES

Certified Mail No.

Agency Interest (AI) No.: 2519 Activity No.: PER20040001

Lloyd J. Tabary II Corporate Representative DSM Copolymer 8560 Anselmo Lane Baton Rouge, LA 70810

RE: NO_x and VOC Emission Reduction Credits, Addis Plant, DSM Copolymer, Addis, West

Baton Rouge Parish, Louisiana

Dear Mr. Tabary:

Please find enclosed your Emission Reduction Credit (ERC) Certificates to reflect the creditable NO_x and VOC reductions realized by permanently shutting down Boiler No. 1 (EIQ No. 45-83) at the Addis Plant.

A notice requesting public comment on the ERC Certificates was published in both *The Advocate* and the *West Side Journal* on March xx, 2010. A copy of the public notice was mailed to concerned citizens listed in the Office of Environmental Services Public Notice Mailing List on March xx, 2010. XX comments were received.

If you have any questions, please call John H. Dyer of the Air Permits Division at (225) 219-3005.

Sincerely,

Cheryl Sonnier Nolan Assistant Secretary

Date

CSN:JHD

Louisiana Department of Environmental Quality Emission Reduction Credit Certificate

Item Number: 2519PER2004000

Owner:

DSM Copolymer

Phone number:

(225) 490-0021

Company

8560 Anselmo Lane

Address:

Baton Rouge, Louisiana 70810

EMISSION REDUCTION INFORMATION

Physical

Location:

9263 Highway 1 S, Addis 70710, West Baton Rouge Parish

Method of ERC creation: Permanent Shutdown of Boiler No. 1 (EIQ No. 45-83) at the Addis Plant

(Activity Number PER20040001)

Pollutant: NOx (tons)

O₃ NO_x Generated

20.75

Non O₃ NO_x Generated

28.75

TOTAL NO_x Generated

49.50

Date of emission reduction: October 11, 2003

Permit Number: 3120-00004-03

Assistant Secretary

Date

Louisiana Department of Environmental Quality **Emission Reduction Credit Certificate**

Item Number:

2519PER20040001

Owner:

DSM Copolymer

Phone number:

(225) 490-0021

Company

8560 Anselmo Lane

Address:

Baton Rouge, Louisiana 70810

EMISSION REDUCTION INFORMATION

Physical

Location:

9263 Highway 1 S, Addis 70710, West Baton Rouge Parish

Method of ERC creation: Permanent Shutdown of Boiler No. 1 (EIQ No. 45-83) at the Addis Plant

(Activity Number PER20040001)

Pollutant: VOC (tons)

Amount Generated

2.00

Date of emission reduction: October 11, 2003

Permit Number: 3120-00004-03

Assistant Secretary

Date

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

ADDIS PLANT
DSM COPOLYMER
ADDIS, WEST BATON ROUGE PARISH, LOUISIANA
AI NO. 2519
ACTIVITY NO. PER20040001

Background

DSM Copolymer operated a synthetic rubber manufacturing plant located one mile south of Addis in West Baton Rouge Parish, Louisiana. The Addis Plant produced both solid and liquid polymers. Boiler No. 1 (EIQ No. 45-83) was one of three boilers that generated process steam for the Addis Plant. Boiler No. 1 was shut down on October 11, 2003. Boiler No. 1 was operating under Permit 3120-00004-03, issued July 10, 1997, when it ceased operation. Subsequently, the entire plant was shut down in January 2005 and dismantled.

Boiler No. 1 was a natural gas-fired steam boiler with a maximum rating of 119 MM BTU/hr. The boiler was constructed prior to 1984 and was not subject to any federal or state regulations for emissions of the air pollutants NO_x and VOC.

The shutdown of Boiler No.1 resulted in reductions of both NO_x and VOC.

Summary

A portion of the resultant NO_X and VOC emission decrease associated with shutdown of Boiler No. 1 is surplus, permanent, quantifiable, and enforceable in accordance with LAC 33:III. Chapter 6-Regulations on Control of Emissions Through the Use of Emission Reduction Credits Banking. Accordingly, these reductions qualify as Emissions Reduction Credits (ERC). Amounts in the following table are given in tons per year (TPY).

FWY			-		-	T	~
4	ota					v	•
- 8	1114			v	.,	8.	

Source	Allowable Emissions Before Reduction ¹	Actual Emissions ²	
Boiler No. 1	70.00	49.50	49.50
	Adjusted allowable emis	ssions (§607.C.3): ssions (§607.C.4):	62.51 49.50 ³
	Allowable emissions after redu		0.00
	Surplus emission redu	action (§607.C.6):	49.50
	Adjustments for	netting (§607.D):	-0
		Total ERC:	49.50

Permit 3120-00004-03 issued 7/10/97

Average of 2001 and 2002 actual emissions (§607.C.2).

³ Baseline emissions shall be the lower of actual emissions or adjusted allowable emissions when the design value is not above the NAAQS for ozone (§607.C.4.a.ii).

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

ADDIS PLANT DSM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA AI NO. 2519 ACTIVITY NO. PER20040001

Louisiana promulgated a NO_X Reasonably Available Control Technology (RACT) rule (LAC 33:III.Chapter 22) on March 20, 2002. Beginning May 1, 2005, Chapter 22 required sources to reduce NO_X emissions during the five month ozone season, May 1 through September 30, inclusively. Typically, a stationary source reduces emissions below the baseline to generate surplus emission reduction credits. Due to the five month applicability of Chapter 22, the allowable emission limitation for a stationary source could potentially have two values, one for the five month ozone season, and another for the sevenmonth non-ozone season.

Thus, baseline emissions for a given stationary source, which are used to determine the surplus emission reduction (§607.C.6), could have two different values. In order to accurately determine the amount of ERC that can be used as offsets for nonattainment new source review (NNSR) permitting, baseline emissions and surplus ERC must be determined for the two time periods. Total NO_X ERC for any annual time period will consist of the ERC from the five month ozone season and the ERC from the seven month non-ozone season. Offset requirements for new sources derive from Section 173(a)(1)(A) of the Clean Air Act (CAA), which concerns "total" emissions and does not address the use of emission offsets for nonattainment permitting over periods of less than one year. Therefore, the NO_X ERC to be used in all NNSR permitting under LAC 33:III.504 must be determined by adding the ERC from the ozone season and the non-ozone season.

With respect to all offsets under Chapter 5 and all ERC under Chapter 6, the total NO_X emission increases during the ozone season must be offset by NO_X ERC from the ozone season. Non-ozone season NO_X increases may be met by either ozone or non-ozone NO_X ERC. The annual NO_X increase must be offset by the total combination of ozone and non-ozone season surplus NO_X emission reduction credits. See 67 FR 48093-48094 (July 23, 2002).

Ozone (O₃) season NO_x ERC:

Source	Allowable Emissions Before Reduction	Actual Emissions	
Boiler No. 1	29.34 ⁴	20.75	20.75
	Adjusted allowable emissions (§607.C.3):		
Baseline emissions (§607.C.4):			20.75
	Allowable emissions after reduction (§607.C.5):		0.00
	Surplus emission reduction (§607.C.6):		20.75
	Adjustments for netting (§607.D):		-0
		O ₃ season ERC:	20.75

^{4 70.00 * 153/365}

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

ADDIS PLANT DSM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA AI NO. 2519

ACTIVITY NO. PER20040001

Non-ozone (non-O₃) season NO_x ERC:

Source	Allowable Emissions Before Reduction	Actual Emissions	
Boiler No. 1	40.66 ⁵	28.75	28.75
	Adjusted allowable emissions (§607.C.3):		40.66
	Baseline emissions (§607.C.4):		28.75
	Allowable emissions after reduction (§607.C.5):		0.00
	Surplus emission reduction (§607.C.6):		28.75
	Adjustments for netting (§607.D):		-0
	Non-	O ₃ season ERC:	28.75

Total VOC ERC:

	Allowable Emissions	Actual	
Source	Before Reduction ⁶	Emissions ⁷	
Boiler No. 1	2.90	2.00	2.00
	Adjusted allowable emissions (§607.C.3):		
Baseline emissions (§607.C.4):			2.00
	Allowable emissions after reduction (§607.C.5):		0.00
	Surplus emission reduction (§607.C.6):		2.00
	Adjustments for	netting (§607.D):	-0
		Total ERC:	2.00

Analysis of validity

Timeliness

Per §615.A, all applications for banking emission reductions shall be submitted by March 31 following the year in which the reductions occurred. Boiler No.1 was shut down on October 11, 2003. The application was dated March 31, 2004.

Emissions reductions can be recognized as ERC only if they are determined to be surplus, permanent, quantifiable, and enforceable. Each criterion is addressed below.

⁵ 70.00 * 212/365.

⁶ Permit 3120-00004-03 issued 7/10/97.

⁷ Average of 2001 and 2002 actual emissions (§607.C.2).

⁸ See EDMS Document No. 31455504.

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

ADDIS PLANT
DSM COPOLYMER
ADDIS, WEST BATON ROUGE PARISH, LOUISIANA
AI NO. 2519
ACTIVITY NO. PER20040001

Surplus

Procedures for calculating the surplus emission reduction are outlined in §607.C & D.

- 1. The design value for the nonattainment area is below the 1-hour national ambient air quality standard (NAAQS) for ozone. Per §607.C.4.ii, if the design value for the nonattainment area is not above the 1-hour national ambient air quality standard (NAAQS) for ozone, the department shall compare the actual emissions with the adjusted allowable emissions in order to determine baseline emissions.
- Calculate actual emissions during the baseline period. Actual emissions during the baseline period of 2001 and 2002 claimed in the Addis Plant Boiler No. 1 ERC Bank application were checked against the department's Emission Inventory database. NO_x and VOC emissions during the baseline period were calculated to be 49.50 and 2.00 TPY, respectively.
- 3. Calculate adjusted allowable emissions. Allowable emissions shall be adjusted to account for all new or revised federal or state regulations adopted that will require, or would have required, all or a portion of the emission reductions that comprise the ERC application. At the time of shutdown of Boiler No. 1, the DSM Copolymer Addis plant was operating under Permit No. 3120-00004-03 issued July 10, 1997. This permit was also in effect during the baseline period of 2001-2002. The permit required the plant to comply with the emission control regulations of 40 CFR 63, Subpart U, NESHAP: Group I Polymers and Resins. However, there are no Subpart U requirements applicable to Boiler No. 1. In addition, the boiler, which was constructed prior to 1984 and had not since been modified or reconstructed, was not subject to any federal New Source Performance Standard (NSPS). The department examined the federal regulations and found no new or modified requirements that would now be applicable to Boiler No.1.

With regard to state regulations, there were no NO_x and VOC regulations applicable to a natural gas-fired boiler at the time of the reduction. However, LAC 33:III.Chapter 22 was promulgated on March 20, 2002, and had an effective date of May 1, 2005. §2201.D.1 sets NO_X emissions limits for stationary gas turbines and industrial boilers. Boiler No. 1 was shut down in 2003, and DSM would have had to install low NOx burners or other controls to meet the new NOx RACT regulations by the May 1, 2005 compliance date. Therefore, allowable NOx emissions during the 5-month ozone season have to be adjusted for compliance with the LAC 33:III.Chapter 22 standard of 0.10 pounds NOx/MM Btu for industrial boilers \geq 80 MM Btu/hr. The heat input of 119 MM Btu/hr during the 2001 and 2002 ozone seasons was multiplied by the factor of 0.10 lb/MM Btu to calculate what would have been allowed beyond May 1, 2005. Adjusted allowable NOx emissions equal 21.85 tons for ozone season. For non-ozone season, since there are no new or revised NO_X regulations adopted since the baseline period that would have affected Boiler 1, adjusted allowable emissions for this period equal the permitted value. Total adjusted allowable NOx emissions for the baseline period are calculated to be 62.51 TPY (21.85 tons- O_3 season + 40.66 tons-non O_3 season).

For VOC emissions, there are no new or revised federal or state regulations adopted since the baseline period that would have affected Boiler No. 1. Therefore, the emission limits contained in Permit No. 3120-00004-03 in effect at the time of the reduction also represent the "adjusted allowable emissions" as defined by §607.C.3. Adjusted allowable VOC emissions total 2.90 TPY.

AIR PERMITS DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

ADDIS PLANT DSM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA AI NO. 2519 ACTIVITY NO. PER20040001

- 4. Quantify baseline emissions. Per §607.C.4.a.ii, if the design value is not above the NAAQS for ozone, baseline emissions shall be the lower of actual emissions (step 2 above) or adjusted allowable emissions determined in accordance with §607.C.3 (step 3 above). In this case, actual emissions are the limiting factors. Baseline emissions of NO_x and VOC total 49.50 TPY and 2.00 TPY, respectively.
- 5. Calculate allowable emissions after the reductions occurred. Boiler No. 1 was permanently shut down; thus, allowable emissions after the reduction are zero.
- 6. Calculate the surplus emission reduction by subtracting the allowable emissions after the reduction occurred from the baseline emissions.

 NO_x : 49.50 TPY – 0.00 TPY = 49.50 TPY VOC: 2.00 TPY – 0.00 TPY = 2.00 TPY

7. Finally, adjust for netting (§607.D). Emission reductions used in a netting analysis (i.e., to determine the *net emissions increase* as defined in LAC 33:III.504 or 509, as appropriate) that prevented the increase from being considered "significant" are not eligible for use as offsets. The quantity of emission reductions utilized to "net out" shall not be considered creditable. There is zero adjustment for netting, as the emission reductions were not used in a netting analysis.

 NO_x : 49.50 TPY - 0.00 TPY = 49.50 TPY VOC: 2.00 TPY - 0.00 TPY = 2.00 TPY

Permanent

The reductions are permanent because Boiler No. 1 was shut down on October 11, 2003, and subsequently demolished when the entire plant was shut down in January 2005. The plant wide air emissions permit was terminated on October 10, 2006.

Quantifiable

The emissions from Boiler No. 1 were calculated using approved EPA methods, EPA emission factors, and process data.

Enforceable

Finally, the reductions are enforceable because the Boiler No. 1 emission source was permanently shut down and removed from the site. The entire plant then ceased operation and the Addis plant-wide permit was terminated by the department.

LDEQ-EDMS Document 31455504, Page 1 of 2

DSM Copolymer

copy to feter forge Dyan DSM 15

P. D. Box 327 Addis, LA 70710-0327

Bart Wesley

Quality, Environmental, Safety & Health Manager

Phone: (225)-267-3161
Facsimile: (225)-267-3832
E-Mail: bart.wesley@dsm.com

March 31, 2004

CERTIFIED MAIL: RETURN RECEIPT REQUESTED CERTIFIED MAIL NUMBER: 7003 1010 0005 2126 4592

Office of Environmental Services Permits Division P. O. Box 82135 Baton Rouge, LA 70884-2135

DSM Copolymer Louisiana ERC Bank Application Agency Interest No. 2519 Permit No 0591 30831

Dear Sirs:

Please find enclosed DSM Copolymer's Louisiana ERC Bank Application.

If you have any questions or need any further information about this material, please contact me at (225) 267-3161.

Sincerely,

Bartley D. Wesley QESH Manager

Enclosures: LA ERC Bank Application

BDW-23-04

DEU DES

Department of Environmental Quality
Office of Environmental Services
Permits Division
P.O. Box 82135
Baton Rouge, LA 70884-2135
(225) 765-0219

LOUISIANA ERC BANK APPLICATION NO_x_X_OR VOC_X_

COMPANY:	DSM Cope	olymer			19
•					nterest No.)
FACILITY:	Addis Fa	cility			30831 sit No.)
LOCATION:		Addis (City)		West Bat	on Rouge
	9263 Louis	iana Highway 1 Sc (Physica	outh		
CONTACT:		Tabery	General Counsel (Title)	(225	(Phone)
		9263 La. Hwy. 1	(11016)		(Phote)
MAILING AD		South	Addis	LA (State)	70710 (Zip Code)
		(Street or P.O. Box)	(City)	(State)	(Zip Code)
	5-83	October	11, 2003 <u>M</u> a	y 2001 -	April 2002
(Affected EI	Q Source ID(s))	(Date of Actual Em	issions Decrease)	(Baseline	Period)
		1	NOx		VOC
ALLOWABLE	S BEFORE:	29.34	40.65 (October 1 - April 30		2,9
		(May 1 - September 30)	(October 1 - April 30)	(TPY)
AVG. ACTUAL	LEMISSIONS:	29,34	40.65	_	2.9
		29,34 (May 1 - September 30)	40,65 (October 1 - April 30)	(TPY)
CHAPTER 22	LIMIT ¹ :	26.90	N/A		N/A
		(May 1 - September 30)	N/A (October 1 - April 30	1	13/11
ALLOWABLE	SAFTEDI.	0	0		0
ALLOWABLE	SAFILK.	(May 1 - September 30)	(October 1 - April 30)	(TPY)
CREDITABLE	CHANCE	26.00	10.65		2.0
CREDITABLE	CHANGE:	(May 1 - September 30)	40.65 (October 1 - April 30)	2.9 (TPY)
Allowables sho orders, consent	uld account for decrees, etc. In	pter 22 limits have already all applicable federal and the case of enforcement nent. If no such terms are	state regulations, emissi instruments, surplus rec	ons limitation luctions may	ns, and compliance be included as pe
CREDIBILIT	Y:				
All applicable stover letter to the		regulations that apply to t	he affected emission poi	nt(s) should	be addressed in the
RESPONSIBI	E OFFICIAL	CERTIFICATION:	****************		
I hereby certify		tion contained in this ER	C Bank Application and	attached calc	ulations is true and
	i Tabary	General	Counsel	(225) 26	57-3466
	Name)	(Titl		(Pho	
Tour	W/	/ MAKEN 31	1,2004		
181	nature)	y (Dat	e)		April 2002

State of Louisiana

Department of Environmental Quality

M.J. "MIKE" FOSTER, JR. **GOVERNOR**

J. DALE GIVENS SECRETARY

Certified Mail No.: P 159 557 954

Mr. Lloyd J. Tabary II, Esq. Environmental Manager DSM Copolymer Post Office Box 2591 Baton Rouge, Louisiana 70821-2591

Dear Mr. Tabary:

RE: Permit modification, Addis Plant, DSM Copolymer, Addis, West Baton Rouge Parish, Louisiana

This is to inform you that the permit modification for the above referenced facility has been approved under LAC 33:III.501. The submittal was approved on the basis of the emissions reported and the approval in no way guarantees the design scheme presented will be capable of controlling the emissions as to the types and quantities stated. A new application must be submitted if the reported emissions are exceeded after operations begin. synopsis, data sheets and conditions are attached herewith.

It will be considered a violation of the permit if all proposed control measures and/or equipment are not installed and properly operated and maintained as specified in the application.

The permit number cited below should be referenced in future correspondence regarding this facility.

Done this /Orday of July, 1997.

3120-00004-03 Permit No.:

Very truly yours,

Gustave A. Von Bodungen,

Assistant Secretary

GVB: DCN

c: Capital Regional Office

AIR PERMIT BRIEFING SHEET AIR QUALITY DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

ADDIS PLANT, DEM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA

I. BACKGROUND:

DSM Copolymer operates a synthetic rubber manufacturing plant one mile south of Addis, West Baton Rouge Parish, Louisiana. The original grandfathered plant was authorized to use fuel oil under Permit Number 258, dated December 18, 1973. Permit Number 899, dated February 28, 1978 allows the plant to produce the new TLA liquid polymer. A third finishing line was added to the plant under Permit Number 1742T, dated December 20, 1988. The EPM/EPDM production was allowed to increase to 160 million pounds per year by Permit Number 1742T(M-1). The plant added a fourth finishing line under Permit Number 3120-00004-01, dated October 12, 1990. Currently the plant operates under Permit Number 3120-00004-02, dated October 23, 1992 for the Boiler No. 3 modification.

II. ORIGIN

An air permit application and Emission Inventory Questionnaire (EIQs) dated September 11, 1996, as well as additional information dated March 27, 1997, were received requesting a permit modification.

III. DESCRIPTION

The Addis Plant produces both solid and liquid polymers. Ethylene, propylene, and other comonomers are received via pipelines, blended with solvent, and metered to the reactors where polymerization occurs. The polymerization reaction is then stopped and unreacted monomers are removed. Crumb rubber is dewatered and pressed into bales for shipping. In the liquid polymer process, the polymer/solvent mixture from the reactors is washed and mixed with hot oil. The liquid product is separated from unreacted monomers and pumped to storage. Recovered monomers and solvent from both processes are purified, dried, and recycled to the feed blending section.

DSM Copolymer proposes to increase the production rate of Boiler No. 1 and No. 2 to 82,271 pounds of steam per hour. The additional steam requirement is from the OA1 product improvement project. The retrofitting project for the No. 7 and No. 9 Dryers was canceled. Boiler No. 3 (BIF) is excluded from this permit.

AIR PERMIT BRIEFING SHEET AIR QUALITY DIVISION LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

ADDIS PLANT, DSM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA

Estimated emission changes in tons per year are as follows:

			Permit	Actual
Pollutant	Before	After	Change	Change
PM ₁₀	17.71	8,85	- 8.86	+ 0.94
SO ₂	1.08	0.67	- 0.41	+ 0.34
NOx	168.60	147.23	- 21.37	+ 69.48
CO	111.47	36.70	- 74.77	+ 11.62
VOC	543.40	545.27	+ 1.87	+ 4.40
HCl	0.03	0.03	-	-
SO ₃	0.02	0.02	-	_
Ammonia	-	5.25	+ 5.25	-
Chlorine	-	0.22	+ 0.22	_

VOC includes ethylene, propylene, 231.19 TPY of n-hexane and 53.36 TPY of toluene. The actual 69.48 tons/yr of NO_X increase is above the Prevention of Significant Deterioration (PSD) de minimis of 40 TPY. A contemporaneous netting demonstration is required. DSM installed Low NO_X burners in the No. 3 Boiler in December 1992 to reduce 49.0 tons/year of NO_X , which provides enough credit to net out of PSD review.

The Acid Wash Temporary Solvent Storage Tank complies with NSPS Subpart Kb. Fugitive emissions of VOC are controlled by a monitoring program conforming to LAC 33:III.2121. The Addis Plant complies with NESHAP Subpart U.

IV. TYPE OF REVIEW:

This permit was reviewed for compliance with the Louisiana Air Quality Regulations, New Source Performance Standards and NESHAP. Prevention of Significant Deterioration does not apply.

This facility is a major source of toxic air pollutants. Normal hexane and toluene emissions are above the minimum emission rates (MER) under Louisiana Toxic Regulations. Maximum achievable control technology is not required for these Class III toxic air pollutants. Impact on air quality is below the Louisiana toxic ambient air standards. Air toxic compliance plan has been approved.

V. PUBLIC NOTICE:

Public notice is not required for a minor permit modification.

SPECIFIC CONDITIONS

ADDIS PLANT, DSM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA

- 1. Permittee shall demonstrate compliance with NO_x and CO emission limits set in this permit by performing a stack test on Boiler No. 1 and No. 2, Emission Point 45-83 and 46-83. Test methods and procedures shall be in accordance with 40 CFR 60, Appendix A, Method 7E-Determination of Nitrogen Oxides Emissions from Stationary Sources and Method 10-Determination of Carbon Monoxide emissions from Stationary Sources.
- 2. Permittee shall ensure destruction of emissions to the flare stack, Emission Point 32-81, by maintaining the heat content of the flare gas above 300 BTU/scf and by installing, maintaining, and operating according to the manufacturer's specifications a heat sensing device to detect the continuous presence of a flame. Alternate devices may be used with the prior approval of the Air Quality Division, Engineering Section.
- Permittee shall control particulate emissions from finishing line dryers, Emission Points 34-81, 35-81, 38-82, and 74-90, with wet scrubbers having removal efficiencies of 99% or greater. Minimum scrubber liquid flowrate shall be 375 gpm. This flowrate shall be recorded daily. The records shall be kept on site and available for inspection by the Air Quality Division.
- Fugitive emissions of VOC shall be controlled by a monitoring program conforming to LAC 33:III.2121.
- Hexane emissions from the Fourth Finishing Line shall be limited to no more than an average of 0.30 lb/100 lb product. The average shall be recorded each month, as well as the average for the last twelve months. These records shall be kept on site and available for inspection by the Air Quality Division. The average hexane emissions above the maximum listed in this specific condition for any twelve consecutive month period shall be a violation of this permit and must be reported to the Air Quality Division, Enforcement Section. A report showing the average hexane emissions for the preceding calendar year shall be submitted to the Air Quality Division by February 15.
- 6. The Acid Wash Temporary Solvent Storage Tank, Emission Point 67-89, shall comply with all applicable provisions of New Source Performance Standards, 40 CFR 60, Subpart Kb-Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced after July 23, 1984.

SPECIFIC CONDITIONS

ADDIS PLANT, DSM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA

7. The Addis Plant shall comply with all applicable provisions of National Emission Standards for Hazardous Air Pollutants for Source Categories, 40 CFR 63, Subpart U - National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins.

LOUISIANA AIR EMISSION PERMIT GENERAL CONDITIONS

- This permit is issued on the basis of the emissions reported in the application for approval of emissions and in no way guarantees that the design scheme presented will be capable of controlling the emissions to the type and quantities stated. Failure to install, properly operate and/or maintain all proposed control measures and/or equipment as specified in the application and supplemental information shall be considered a violation of the permit and LAC 33:III.501. If the emissions are determined to be greater than those allowed by the permit or if proposed control measures and/or equipment are not installed or do not perform according to design efficiency, an application to modify the permit must be submitted.
- II. The permittee is subject to all applicable provisions of the Louisiana Air Quality Regulations. Violation of the terms and conditions of the permit constitutes a violation of these regulations.
- The attached data and/or Emission Inventory Questionnaire sheets establish the emission and operating limitations and are a part of the permit. The synopsis and data sheets are based on the application and Emission Inventory Questionnaire dated September 11, 1996, as well as additional information dated March 27, 1997.
- IV. This permit shall become invalid, for the sources not constructed, if:
 - A. Construction is not commenced, or binding agreements or contractual obligations to undertake a program of construction of the project are not entered into, within two (2) years (18 months for PSD permits) after issuance of this permit, or;
 - B. If construction is discontinued for a period of two(2) years (18 months for PSD permits) or more.

The administrative authority may extend this time period upon a satisfactory showing that an extension is justified.

This provision does not apply to the time period between construction of the approved phases of a phased construction project. However, each phase must commence construction within two (2) years (18 months for PSD permits) of its projected and approved commencement date.

LOUISIANA AIR EMISSION PERMIT GENERAL CONDITIONS

- V. The permittee shall submit semi-annual reports of progress outlining the status of construction, noting any design changes, modifications or alterations in the construction schedule which have or may have an effect on the emission rates or ambient air quality levels. These reports shall continue to be submitted until such time as construction is certified as being complete. Furthermore, for any significant change in the design, prior approval shall be obtained from the Louisiana Air Quality Division.
- VI. The permittee shall notify the Department of Environmental Quality, Air Quality Division within ten (10) calendar days from the date that construction is certified as complete and the estimated date of start-up of operation. The appropriate Regional Office shall also be so notified within the same time frame.
- VII. Any emissions testing performed for purposes of demonstrating compliance with the limitations set forth in paragraph III shall be conducted in accordance with the methods described in the Division's test manual or any other methods approved by the U.S. EPA. Any deviation from or modification of the methods used for testing shall have prior approval from the Louisiana Air Quality Division.
- VIII. The emission testing described in paragraph VII above, or established in the specific conditions of this permit, shall be conducted within sixty (60) days after achieving normal production rate, but in no event later than 180 days after initial start-up (or restart-up after modification). The Air Quality Division Surveillance Section shall be notified at least (30) days prior to testing and shall be given the opportunity to conduct a pretest meeting and observe the emission testing. The test results shall be submitted to the Air Quality Division within forty-five (45) days after the complete testing. As required by LAC 33:III.913, the permittee shall provide necessary sampling ports in stacks or ducts and such other safe and proper sampling and testing facilities for proper determination of the emission limits.
- The permittee shall, within 180 days after start-up of each project or unit, report to the Louisiana Air Quality Division any significant difference in operating emission rates as compared to those limitations specified in paragraph III. This report shall also include, but not be limited to, malfunctions and upsets.

LOUISIANA AIR EMISSION PERMIT GENERAL CONDITIONS

- X. The permittee shall retain records of all information resulting from monitoring activities and information indicating operating parameters as specified in the specific conditions of this permit for a minimum of at least five (5) years.
- XI. If for any reason the permittee does not comply with, or will not be able to comply with, the emission limitations specified in this permit, the permittee shall provide the Air Quality Division with the following information in writing within five (5) days of such conditions:
 - A. Description of noncomplying emission(s);
 - B. Cause of noncompliance;
 - c. Anticipated time the noncompliance is expected to continue, or, if corrected, the duration of the period of noncompliance;
 - D. Steps taken by the permittee to reduce and eliminate the noncomplying emissions; and
 - E. Steps taken by the permittee to prevent recurrences of the noncomplying emissions.
- Permittee shall allow the authorized officers and employees of the Department of Environmental Quality, at all reasonable times and upon presentation of identification, to:
 - A. Enter upon the permittee's premises where regulated facilities are located, regulated activities are conducted or where records required under this permit are kept;
 - B. Have access to and copy any records that are required to be kept under the terms and conditions of this permit, the Louisiana Air Quality Regulations, or the Act;
 - C. Inspect any facilities, equipment (including monitoring methods and an operation and maintenance inspection), or operations regulated under this permit; and
 - D. Sample or monitor, for the purpose of assuring compliance with this permit or as otherwise authorized by the Act or regulations adopted thereunder, any substances or parameters at any location.

LOUISIANA AIR ENISSION PERMIT CONDITIONS

- XIII. If samples are taken under Section XII.D. above, the officer or employee obtaining such samples shall give the owner, operator or agent in charge a receipt describing the sample obtained. If requested prior to leaving the premises, a portion of each sample equal in volume or weight to the portion retained shall be given to the owner, operator or agent in charge. If an analysis is made of such samples, a copy of the analysis shall be furnished promptly to the owner, operator or agency in charge.
- The permittee shall allow authorized officers and employees of the Department of Environmental Quality, upon presentation of identification, to enter upon, the permittee's premises to investigate potential or alleged violations of the Act or the rules and regulations adopted thereunder. In such investigations, the permittee shall be notified at the time entrance is requested of the nature of the suspected violation. Inspections under this subsection shall be limited to the aspects of alleged violations. However, this shall not in any way preclude prosecution of all violations found.
- XV. The permittee shall comply with the reporting requirements specified under LAC 33:III.919.E as well as notification requirements specified under LAC 33:III.927.
- XVI. In the event of any change in ownership of the source described in this permit, the permittee and the succeeding owner shall notify the Louisiana Air Quality Division, within ninety (90) days after the event, to amend this permit.
- Typical emissions associated with routine operations that XVII. are under control upon release, that are predictable in nature, and that are quantifiable as described in this permit application, are considered authorized discharges. Any significant deviation from the emissions specified in the permit application for such discharges, by event, shall be reported to the department according to LAC 33:I.3901. Actual emissions resulting from such activities must be reported to the department on an annual basis. emissions are not reflected in the permit totals as they are short term and/or intermittent in duration and have no significant impact on air quality. Examples of such events include but are not limited to cleaning equipment, startups, shutdowns, opening off-line equipment (dual units), and releases to control devices such as flares or incinerators. This permit condition does not authorize the maintenance of a nuisance or a danger to public health and safety.

LOUISIANA AIR EMISSION PERMIT GENERAL CONDITIONS

XVIII. Provisions of this permit may be appealed in writing pursuant to La. R.S. 30:2024(A) within 30 days from receipt of the permit. Only those provisions specifically appealed will be suspended by a request for hearing, unless the secretary or the assistant secretary elects to suspend other provisions as well. A request for hearing must be sent to the following:

Attention: Assistant Secretary, DLAE La. Dept. of Environmental Quality Office of the Secretary Post Office Box 82263 Baton Rouge, Louisiana 70884-2263

AIR QUALITY DATA SHEET PAGE 1

ADDIS PLANT, DSM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA

Locati	on or plant: 15 UTM: 667.90		225	7.40		N
Descri	ption of location: One mile sout	n of Addis	, L	ouisi	ana	
Estima	ated starting date of construction	n: / NA				
Estima	ated starting operation will begin	n: July	19	97		
Type o	of Dispersion Calculations Used:	NA				
	EFFECTS ON AMBIEN	T AIR				
Pollut	calculated M cant Time Period Ground Level Concentration				Air Standa	rd
NEW	OR MODIFIED X EMISSION S	OURCES_R	ibbe (Tyl	r Pro	ducti	on e)
Emiss: Point	No. Description R	Operat: ate (Max) ank Capac:	or		Opera Sche D/W	
4-78	Dry Recycle Hexane Manaway		NA	24	7	52
7-78	Natural Gas K.O. Drain		NA	24	7	52
8-78	Fresh Hexane Tank	27,600	gal	24	7	52
9-78	EN Tank Manaway	54,000	gal	24	7	52
10-78	EN Slop Storage	15,500	gal	24	7	52
13-78	Stripper Shaker Screen		NA	24	7	52
14-78	Drain Coagulator O/H Decanter E.P. No.	1	NA	24	7	52
15-78	Recycle Water Tank Overflow		NA	24	7	52
16-78	Wet Wash Solvent Surge	15,000	gal	24	7	52
18-78	Tramp Stripper Outfall E.P. No. 1		NA	24	7	52
19-78	Hexane Surge Tank	34,300	gal	24	7	52
20-80	Low Pressure Vent		NA	24	7	52
21-80	Toluene Storage Tank	8,600	gal	24	7	52
	Gasoline Storage Tank	2,500	gal	24	7	52

AIR QUALITY DATA SHEET PAGE 1

ADDIS PLANT, DSM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA

Emissi		Operating		Opera Sche	
Point 1	No. Description	Rate (Max) or Tank Capacity	H/D	D/W	
		Taik capacity	11/2	27	
23-80	Catalyst Make-Up A	4360 gal	24	7	52
24-81	Catalyst Make-Up B	4360 gal	24	7	52
25-81	Catalyst Make-Up TLA A	4360 gal	24	7	52
26-81	Catalyst Make-Up TLA B	4360 gal	24	7	52
27-81	A. O. Make-Up Tank	800 gal	24	7	52
28-81	MI Make-Up Tank A	8400 gal	24	7	52
29-81	Alkyl Storage Tank	17,100 gal	24	7	52
30-81	Alkyl Blend Tank	29,933 gal	24	7	52
31-81	Hexane Tank O.A. No. 1	34,300 gal	24	7	52
32-81	Addis Plant Flare	NA	24	7	52
33-81	EN Recovery Jet	NA	24	7	52
34-81	Finishing Line, North, No. 9 Dryer	56 MM lbs/yr	24	7	52
35-81	Finishing Line, South, No. 8 Dryer	56 MM lbs/yr	24	7	52
36-81	Oleum Storage Tank	12,000 gal	24	7	52
37-81	Hydrochloric Acid Storage Tank	7700 gal	24	7	52
38-82	Finishing Line, Third, No. 7 Dryer	56 MM lbs/yr	24	7	52
39-82	Stripper Shaker Screen, Third Line	NA	24	7	52
40-82	Aluminum Alkyl Storage TEA	900 gal	24	7	52
41-82	MI Make-Up B	8428 gal	24	7	52
43-82	NVP Storage Tank	8130 gal	24	7	52
44-82	Dicumyl Peroxide Storage	, NA	24	7	52
45-83	Boiler No. 1	119 MM BTU/hr	24	7	52
46-83	Boiler No. 2	119 MM BTU/hr	24	7	52
48-86	Tramp Stripper Outfall, TLA Plant	ММ	24	7	52
49-88	RD Storage Tank	8400 gal	24	7	5
50-88	Neat MI Storage Tank	6000 gal	24	7	53
51-88	A.O. Feed Tank, EP No. 2	800 gal	24	7	53
52-88	Alkyl Feed Tank, EP No. 1	800 gal	24	7	5
53-88	Alkyl Feed Tank, OA No. 1	1000 gal	24	7	5
54-88	MI Make-Up Tank, EP No. 2	1000 gal	24	7	5
55-88	Tramp Stripper Outfall, EP No. 2	NA	24	7	5

AIR QUALITY DATA SHEET PAGE 1

ADDIS PLANT, DSM COPOLYMER ADDIS, WEST BATON ROUGE PARISH, LOUISIANA

Emissi			Operatir		Opera	
Point	No. Description		(Max)			dule
	•	Tank	Capacit		D/W	W/Y
56-88	Alkyl Feed Tank, EP No. 2		1300 g	al 24	7	52
57-88	Catalyst Make-Up Tank A, EP No. 2		4360 g	al 24	7	52
58-88	Catalyst Make-Up Tank B, EP No. 2		4360 g	al 24	7	52
59-88	Low Pressure Vent, EP No. 2			NA 24	7	52
60-88	Maleic Anhydride Storage Tank		75,200 g	al 24	7	52
61-88	Finishing Building Expeller, North,	No. 9	2000 c	fm 24	7	52
62-88	Finishing Building Expeller, South,	No. 8	2000 c	fm 24	7	52
63-88	Finishing Building Expeller, Third,	No. 7	2000 c	efm 2	7	52
64-88	Propylene Sphere		155,000 g	al 2	4 7	52
65-88	Propane Storage Tank		30,000 g	gal 2	4 7	52
66-89A	Cement Spheres A		16,600 g	gal 2	4 7	52
66-89B	Cement Spheres B		16,600 g	gal 2	4 7	52
66-89C	Cement Spheres C		16,600 g	gal 2	4 7	52
67-89	Acid Wash for Temp. Solvent Storage		13,000 g	gal	Stand	рy
68-89	NPPDA Storage Tank		15,000 g	gal 2	4 7	52
69-90	Wastewater Transfer Storage Tanks		300,175 9	gal 2	4 7	52
70-90	Oil Additives Storage Tanks, Non-VO	C	8.67 MM 9	gal 2	4 7	52
71-90	Oil Additives Storage Tanks, Non-VO	c ,	169,550	gal 2	4 7	. 52
72 -9 0	Stripper Shaker Screen, EP No. 2	i		NA 2	4 7	52
73-90	Finishing Building Expeller, Fourth	, No.	10 2900	cfm 2	4 7	52
74-90	Finishing Line, Fourth, No. 10	8	O MM lbs	/yr 2	4 7	52
75-93	Hazardous Waste Feed Storage Tank		5000	gal 2	4 7	-52
98	Propylene Purification System Fugit	ives		NA 2	4 7	52
99	Addis Plant Fugitives	*		NA 2	4 7	52

Compeny Name	r Name			Plant Location (If any)	Location (if any)				-	Date of Submitted	therefitted		
		DSM Copolymer, Inc.	nc.		Addls.	Addle, La A	Addis Plant	¥			Septe	September 5, 1996	96
Soun	Source ID number	Descriptive name o	Descriptive name of the equipment served by this stack or vent	stack or vent			Location	Location of stack or verit (see instidetentine location of area sources)	rent (see by	Location of stack or verit (see trestructions on how to determine location of area sources)	how to	-	
	4.78		DRY RECYCLE HEXANE MANAWAY	INE MANAWAY			UTM zone no.		•		15 Horb 16 Vert	ontal Coordin cel Coordinat	[] 16 Hortzental Coordinate <u>848,987 m</u> E [] 16 Varical Coordinate <u>3367,289</u> m N
Sta Dis	Stack and Discharge Physical Characteristics	Height of stack shows grade (ft)	Diameter (ft) or stack discharge area (ft ²)	Stack Stack I I II I	Stack gas and samperature (F)	Stack gas not	ges flow at process connect at standard (ft*)/mish;	Stack gas flow at process conditions not at standard (R*)min) N/A		Stack gas and velocity (PVs)	elocity	For the	For tenks, fat volume (gals)
	Type of fuel	Type of fuel used and heat input (see instructions)	hetructions)			Percen	t of armusi Prough thi	Percent of annual throughput of pollutants through this emission point	of tookt	North	Normal operating time of this point	Sime	Normel operating rate
		Type of Fuel	Heat Input (MM BTU/hr)	Operating	_	Dec-Feb M	Mar-May	Jun-Aug	Sep-Nov	J.	days.	woots/	
1000	•	MA	NA	Characteristics	80					Ē	¥	È	•
5	٩				-	;		;	;	:	٠	:	1,716,000,000
	o					3	3 1	1	1	a	7	य	•
Air Poil	tutant Speci	Air Pollutant Specific Information											

4	Control	Control		Emission Rate		Entselon	Add, change,	
Pollutant	edulpment	equipment	Average (Ba/hr)	Maxemum (Bahri)	Armusi (tonsilyr)	potention	or delete code	Concentration in gases exiting at stack.
paticulate matter				,				gartetof ft ²
suffur dioxide / / //								box 4g undd
ultregen dioxide								lay yd mgg
carbon monoxide								pow yd mqq
total NMNE HC (Ind. those listed below)	047, 099	8.99	0	10	0	3		bow by vol
n-Hexane	047, 099	8.88	0	10	0	3		low yd mgg
								lov yd mgg
								ppm by vol
				The second name of the last of				

Company Name	Name	DSM Copolymer, Inc.	olymer, In	nc.	Plant Le	Plant Location (if any) Add	lls, La	Addis, La Addis Plant	je i		Date of Submittel	Septer	September 5, 1996	×
Sour	Source ID number		we name of	Descriptive name of the equipment served by this stack or vent	stack or	rent	*	Locatio	Location of stack or vent (see instructions on how to determine focation of area sources)	ent (see bre sta source	fructions on !	on to		
	81.7			NATURAL GAS K.O. DRAIN	K.O. DR	NIN		UTM zone ho.	Tre ho.	,		[] 15 Hort [] 16 Veri	zontal Coordinal Istal Coordinal	[] 15 Hertonial Coordinate <u>988,997 m</u> E [] 16 Verbal Coordinate <u>2267,439</u> m N
St	Stack and Discharge	Height of stack above grade (ft)	f etack ade (f)	Diameter (ft) or stack discharge area (ft²)	and the same of	Stack gas exit temperature (F)		gas flow at process corr not at standard (It*)/min)	Stack gas frow at process conditions not at standard (It*)/min)		Stack gas exit velocity (fifs)	locity	For ta volum	For tanks, list volume (gals)
Chan	Physical Characteristics	OI		VIN	- <u> </u>	KIN		NIA	•		NIA		1	NIA
	Type of	Type of Niel used and heat Input (see Instructions)	I Input (see	Instructions)			Per	cent of ennu-	Percent of annual throughput of pollutants through this emission point	oliti	Morri	Normal operating time of this point	firme	Normal operating rate
		Type of Fuel	_	Heat Input (ARM BTURn)	õ	_	DecFeb	Mar-May	Jun-Aug	Sep-Nov	1	days/	weeks/	
	•	+ N/A		NA .	Char	Characteristics					ì		Į	
	Δ						2	28	12	28	7	_	z	136,000,000
	u						1	1	1	\$	1	,	1	
1	1	A1. 70.17.4.4.4 C Mar. 1	1											

Air Pollutant Specific Information								
	Control	Control		Emission Rate		Emission	Add, change,	
Pollutant	epoo	equipment	Average (Ba/hr)	Maximum (Defty)	Avenual (fortallyr)	estimation	or delate code	Concentration in gases exiting at stack
paticulate mattler				•				grifted ft
sulfur dioxide								ow yd mgg
nitrogen dioxide								ov yd mqq
carbon monoxide								ov yd mpg
total NM/NE HC (nd. those listed below)	8	85.8	0.11	0.23	0.48	3		ppm by vo
								ov yd mqq
								ppm by vo
								ov yd mog

Company Name	-			-0	the state of the same	A 55				Party of Octonolist	A-Bed		Γ
		DSM Copolymer, Inc.	ď		Ade	Addls, L. A.	Addls Plant	ŧ		5 e5	September 5, 1996	5, 1996	
Source	Source ID number	Descriptive name of	Descriptive name of the equipment served by this stack or vent	by this stac	k or vent		Location	Location of stack or vent (see instructional boatening sources)	ent (see frst ITES SOUTCES	Location of stack or vent (see instructions on how to determine location of area sources)	frow to		
eol .	8-78		FRESH	FRESH HEXANE TANK	ANK		UTIM zone no.				[] 15. Hort [] 16. Ven	zontał Coord Iscal Coordini	[] 18. Hortzontal Coordinate 655,127 m E [] 16. Vertical Coordinate 3357,313 m N
Staci	Stack and Discharge	Height of stack above grade (ft)	Dismeter (ft) or stack discharge area (ft²)	r stack	Stack gas exit temperature (F)		ges flow at process corn not at standard (R*)min)	Stack gas flow at process conditions not at standard (R*)min)	-	Stack gas auft velocity (fivs)	slocity	For	For tanks, list volume (gals)
Charact	Characteristics	O)	N/A	10	NA P		N			Y.		M	27,600
	Type of fuel u	Type of fuel used and heat Irgut (see Instructions)	nstructions)	-		Percen	for annual	Percent of annual throughput of pollutarits through this emission point	of the	Nom	Normal operating time of this point	thre	Normal operating rate
_		Type of Fuel	Heat Input (AMA BILLAny)		Operating	Dec-Feb Ma	Mar-Alley	-Aun-Aug	Sep-Nov	July	days/	weets/	
	•	NA	NA		Characteristics	•				, de	N N N N N N N N N N N N N N N N N N N	189 .	
	٩					;							336,000,000
	0					1	1	i	S)	il.	4	1	
Air Pollut	ant Specifi	Air Pollutant Specific Information											
,			Control	Control		Emission Rate	Rate		Em	Emission	Add, change,	é	
	Pol	Pollutant	edulpment	equipment	M Average (Pos/hr)	Meximum (Rosfir)	E	Armuel (tomalyr)	# E	method	or deteje code		Concentration in gases: extiting at stack
paticulate mattter	mattter				•								gritated ft ²
sulfur dioxide	ride	8											ppm by vol
nitrogen dioxide	loxide												ppm by vol
carbon monoxide	proxide									-			ppm by vol
total NM/h	VE HC (Incl	total NM/NE HC (Incl. those listed below)	660	95.0	1.39	2.73		60.0		5			pow by vol
n-Hexane			660	0'98	0.83	1.66		3.64		5			ppm by vol
													ppm by vot
													ppm by vof

Company Name	D SM C	DSM Copolymer, Inc.		Ē.	Plant Location (# eny) Ad	Addis, Le	Addis Plant	ı		Dete of Submittel	Septen	ntai September 17, 1996	90
Source ID number		Descriptive name of the equipment served by this stack or vent	e equipment serv	ad by this stack	or vent		Location	Location of stack or vent (see instructions on how to determine location of area sources)	ort (see instrees)	ructions on h	ow to		
87-6			EN T	EN TANK MANWAY	r H		UTM zone no.				[] 15 Hori [] 18 Ver	zental Coordi Iteal Coordins	[] 15 Horizental Coordinate <u>\$58,114</u> m E [] 16 Varikal Coordinate <u>\$157,318</u> m N
Stack and Discharge		Height of stack shove grade (ft)	Diameter (ft) or stact discharge eres (ft ²)	or stack res (ft)	Stack gas exit temperature (F)		gas flow at process come not at standard (It*)/min)	Stack gas flow at process conditions not at standard (If)/min)		Stack gas exit velocity (fVs)	locity	For to volun	For tanks, list volume (gals)
Physical Characteristics		Ol	AM	1 C C	NIA		AVA	_		N/A		iol	54,000
Туре	of fuel bred and	Type of fuel bred and heat input (see instructions)	structions)			Peri	card of annual	Percent of annual throughput of - pollutants through this emission point	oht.	Norm	Normal operating time of this point	im•	Normal operating rate
	Type of Fuel		Heat Input (MM BTU/hr)	Π	Operating	Dec-Feb	Mar-May	Jun-Aug	Sep-Nov	hra/ day	days/ week	weeks/	
<u> • </u>	AW		NA	ن ا	Characteristics								800 020
Fue	÷,					22	97	×	92	21	7	2	
٠								1					-
Air Pollutant	Air Pollutant Specific Information	rmation									-		T
			Control	Control		Emission Rate			Emission	Add, change,			
	Pollutant		equipment	equipment efficiency	Average (ibs/hr)	Meximum (Bachr)	Anr (ton	Annual es	method	or delete code		Concentration in pases exiting at stack	***
paticulate mattter	ttter										+	0	a /std m
suffur dioxide							-	1			+	Edd	ion ye mad
nitrogen dioxide	ep						1					mdd	bbu ay voi
carbon monoxide	xide							1			+	India	by to made
total NM/NE	total NM/NE HC (Incl. those listed below)	sted below)	092	100	0.04	0.50	Ö	0.18	4		+	bbul	pow by vot
							-				+	E dd	low by wol
							+	+				maa	ppm by vol

Company Name	Name	DSM Copolymer, inc.		Plent	Plant Location (if any)	Addle, La	Addis Plant	ŧ		Date of Bubmittel	Septen	September 5, 1996	96
Source	Source 1D number	Descriptive name of the equipment served by this stack or vent	the equipment served	by this stack	or vent		Location	Location of stack or veril (see instructions on how to determine tocation of area sources)	((see Instr a sources)	uctions on h	2 8		-
	10-78		EN STO	EN SLOP STORAGE	**		UTM zone no.	78 70.	•		[] 15 Horb [] 16 Verl	tontal Coordin	Horizontal Coordinate <u>668,029</u> m E Verfical Coordinate <u>2357,204</u> m N
Sta Sto	Stack and Discharge	Height of stack above grade (ft)	Diameter (ft) o discharge are	(f) or stack area (ff)	Stack gas and temperature (F)		gas flow at process com- not at standard (It*)/min)	Stack gas flow at process conditions not at standard (It*)/min)		Stack gas auft velocity (fus)	hocky	For	For tanks, Rst volume (gals)
S S	Physical Characteristics	OI T	VN		SN		N/A	4 1		N		-	15,600
	Type of fu	Type of fuel used and heat input (see instructions)	nstructions)			Pen	cent of annual	Percent of annual throughput of pollutants through this emission point	E	Morre	Nomal operating time of this point	three	Normel operating rate
		Type of Fuel	Heat Input (MM BTU/hr)		Operating	DecFeb	Mar-May	Jun-Aug 8	Sep-Nov	1	daya	week p	·
ğ	- ,	N/A	NA	5	Characteristics					;			
	٩					*	27	**	2	2	1	2	700
	v						1						001.400
Air Poli	utant Spe	Air Pollutant Specific Information										-	
			Combol	Control		Emissi	Emission Rate		E	Emission	Add, change,	_	
	_	Pollutant	equipment	efficiency	Average	A Second	Mardmum (fba/hr)	Armusi (tons/yr)	A E	refination	or delete		Concentration in gases exting at stack
paticula	paticulate matter												grietd R
sufur dioxide	oxide												ppm by vol
nitroder	nitroden dioxide												ppm by vol
carbon	carbon monoxida												ppm by vol

Carbon Canister on the outlet vent of this tank

pow for mod

ppm by vol

on fig midd

6

0.88

0.40

97.0

0.76

2 2 2

total NM/NE HC (Incl. those listed below)

n-Hexane Toluene

carbon monoxide

0.34

0.14

Company Name		DSM Copolymer, Inc.	ů	Plant	Plant Location (if any) Add	Addis, La	Addis Plant	Ħ		Data of Submittal Septem	Submittel September 5, 1996	6, 1996	
Source	Source ID number	Descriptive name of the aquipment served by this stack or vent	the aquipment served	by this stack or	vent		Locatio	Location of stack or vent (see instructions on how to determine location of area sources)	nt (see bre	Fructions on	how to		
	13-78		STRIPPER SHAKER SCREEN	HAKER SCI	REEN		NES .	UTM zone no.	•		[] 15 Hort [] 16 Ver	zoniał Coord Bcai Coordin	Horizontel Coordinale <u>887,906</u> m E Vertical Coordinate <u>3387,216</u> m N·
Sta	Stack and Discharge	Height of stack above grade (ft)	Clameter (ft) or stad discharge area (ft²)	1.	Stack ges exit- temperature (F)		gas flow at process con not at standard (R*)/rish)	Stack gas flow at process conditions not at standard (R*)/rein)	_	Stack gas and velocity (fVs)	elocity	For	For tanks, list volume (gals)
Char	Physical Characteristics	OI	NIA	1 2	<u>N/A</u>		N/A	•		SN N			N/A
	Type of fuel us	Type of fuel used and heat input (see instructions)	nstructions)			Perc polluta	ant of annual states	Percent of armuel throughput of pollutants through this emission point	Į.	Norm	Normal operating time of this point	thre	Normal operating rate
		Type of Fuel	Heat Input (MM BTURY)		Operating	DecFeb	Mar-May	3m-Aug	Sep-Nov	1	days/	works	
į	•	N.A	NA	5	Characteristics					ì		Į.	
5	٩						35	72	ä	77	1	23	27,633,900
	υ						1						
Air Pol	utant Specifi	Air Pollutant Specific Information											
			Control	Control		Emissio	Emission Rate		<u></u>	Emission	Add, change,	g <u>i</u>	•
	Poff	Pollutant	equément	equipment	Average (fbs/fir)	Maximum (Res/In)	15 (m)	Annual (tons/yr)	th E	method	or delete code		Concentration in gases exiting at stack
paticula	paticulate mattter			·								+	gristd ft ²
author dioxida	lawida												ppm by vol
5	UAILO						T		-	-		-	low and more

pow de mede

ppm by vol ppm by vol

2

2.35

1.08

0.54

168

048

total NM/NE HC (and, those fisted below)

carbon monoxide nitrogen dioxide

ppm by vol pow ha mod

ppm by vol

Commany Name				Plant	Plant Location (if any)				_	Date of Submittel	mittel		
Company rearing	S	DSM Copolymer, Inc.	.:		Ade	Addle, La	Addis Plant	ınt		Sep	September 5, 1996	1996	
Source ID number		Descriptive name of the equipment served by this stack or vent	he equipment served	by this stack o	ar vent		Location	Location of stack or vert (see instructions on how to determine location of area sources)	£ (see Instru a sources)	offens on h	a t	•	
14-78		DRA	DRAIN COAGULATOR OM DECANTER E.P. #1	ROM DEC	ANTERE.P. #1		UTM zone no.	178 TO.			[] 15 Hortz [] 16 Verß	ontal Coordi	Hortzental Coordinate <u>\$57,925</u> m E. Vertical Coordinate <u>2357,187</u> m N
Stack and Discharge	P 2	Height of stack above grade (ft)	Dismeter (fi) or stack discharge eres (ff)		Stack gas exit temperature (F)	-	ges flow at process corn not at standard (It*)min)	Stack gas flow at process conditions not at standard (It/hmin)	_	Stack gas enti velocity (RVs)	actly actly	For t	For tanks, fist volume (gals)
Physical Characteristics	atics &	Ol	NIA		VIN .		N/A	⋖ 1		V.			N/A
Type	of fuel used	(ype of fuel used and heat input (see instructions)	nstructions)	-		Perc	ant of amu	Percent of armuel throughput of politicals the strongh this emission point	F	Norma	Normal operating time of this point		Normal operating rate
_	, I	Type of Fuel	Heat Input (MM BTU/hr)	Т	Operating	Dec-Feb	Mar-May	S gual-nut.	Sep-Nov	3 !	P. I	weeks/	
•	+	NA .	N.A	క్ []	Characteristics				-	•			
9						77	*	22	2	*	7	2	981,120,000
υ								'					
Air Pollutant Specific Information	Specific	Information											
	:		Control	Control		Emissk	Emission Rate		Emission	work	Add, change,	-	
	Pollutant	ī	epoc	equipment	Average (fbs/hr)	Meximum (fbs/hr)	mum Anr)	Armusi (tons/yr)	method method	Lo po	or delete code	8	Concentration in gases exiting at stack
paticulate mattter	ttter									1		+	grived ft
suffur dloxide												1	box kg wdd
nitrogen ofoxide	ep									1		+	ox kg wdd
carbon monoxide	xide											-	bow fd mad
total NMNE	HC (hd. the	total NM/NE HC (md. those fisted below)	046	8.66	0	0	0.10	0	.,	2			bbm by vo
n-Hexana			048	6.66	0	0	0.10	0	.``	2			low yd mqq
Disposition of the second													low yd modd
						-	Ī			-			low yd mgg

					FOR AIR POLLUTANTS	LUTANT	S)						٠
Company Name		DSM Copolymer, Inc.		Plant L	Plant Location (if eny) Addit	Addls, La A	Addis Plant	· #	0	Date of Submittal Septem	Submittel September 5, 1996	1996	
Source	Source ID number	Descriptive name of the equipment	he equipment served	served by this stack or vent	verit		Location	Location of stack or vent (see instructions on how to determine location of erea sources)	(see instructions)	dons on ho	9 .		
91	16-78		RECYCLE WATE	MATER TANK OVERFLOW	ERFLOW		UTM zone no.	78 NO.) 15 Horbs) 18 Verti	ontal Coordinated Coordinated	[] 15 Hortzenial Coordinate 957,220 m E [] 18 Vartical Coordinate 3367,220 m N
Staci	Stack and Discharge	Height of stack above grade (ft)	Diameter (ft) or stack discharge area (ft)		Stack gas extl temperature (F)		gas flow at process control not at standard (It*)min)	Stack gas flow at process conditions not at standard (It*)/min)		Stack gas ext velocity (fbs)	A)	For tu	For tanks, flst vokame (gals)
Phy	Physical Characteristics	ю	N/N	 F	NIA	•	N/A			NA			N/A
	Type of fuel un	Type of fuel used and heat input (see instructions)	instructions}			Percer	nt of annual a through th	Percent of armusl throughput of pollutants through this amission point	-	Nome	Normal operating time of this point	ı	Normal operating rate
_	-	Toma of Fund	Heat Irout (MM BTU/hr)	Γ	Operating	Dec-Feb M	Mar-May	Jun-Aug Se	Sep-Nov	È.	daye	weeks	
		NA	¥2	Т	Characteristics					È			
Fuel	0				•	22	*	=======================================	7	**	1	2	981,120,000
	v					1		-		1	1		
Air Pollut	ant Specifi	Air Pollutant Specific Information											
			Control	Control		Emission Rate	Rate		Emission	5	Add, change.	_	
	Po	Pollutant	aquipment	equipment	Average	Mendmum	E c	Averual (lone/yr)	nether	E 20	or delete code	Com	Concentration in gases exting at stack
matter atalestica	matter												grield n
authe dioxide	ride												ppm by vol
on purpose	firwide												bow for mod
and and and	POWOR												by to mod
carbon monoxoe	BOXOLO		748 003	100	0	10		0	2				pow fig wol
TOTAL NAME	NE NC (MG	TO(8) NWINE TO (PRO. URGE INNER DELOW)					•			,			ox fd mdd
													bbm by vo
													on fd mod
-							1						

, jox 4q mdd

ppm by vol

ppm by voi

10

1.38

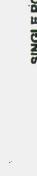
1.04

0.52

95.0

total NM/NE HC (Incl. those listed below)

n-Hexane


nitrogen dioxide carbon monoxide 083

pow for most

Company Name	Name	DSM Copolymer, Inc.	ď	Plant Location (If any)	Addis, La Addis Plant	Addis Pla	.tu	a.	Date of Submittel	bretter Septer	September 5, 1996	. 8
Sour	Source ID number	Descriptive name of	Descriptive name of the equipment served by this stack or vent	stack or veril		Location	Location of stack or vert (see instructions on how to determine location of sins sources)	ant (see brains and see	euctions on (ow to	·	
	18-78		TRAMP STRIPPER OUTFALL E.P. #1	UTFALL E.P. #1		UTM zone na.	6 6 6			[] 15 Horb [] 16 Veri	contal Coordi	[] 15 Hotzental Coordinate <u>187.238</u> m F [] 16 Vertical Coordinate <u>1867.238</u> m N
S 50	Stack and Discharge	Height of stack above grade (ft)	Dismeter (ft) or stack discharge area (ff)	Stack gas anti- temperature (F)	-	gas flow at process corn not at standard (ft*)(men)	Stack gas flow at process conditions not at standard (It*) (It*) (It*)		Stack gas exit velocity (fi/s)	locity	For tu	For tanks, list volume (gals)
Chan	Physical Characteristics R	Ol	NA	N/A		N/A	_		NA			NA
	Type of fuel	Type of fuel used and heat input (see instructions)	Instructions)		Perci	ant of annuals the	Percent of asmuel throughput of pollutarite through this emission point	P de	Morre	Normal operating time of this point	· ·	Mormal operating rate
		Type of Fuel	Heat Input (MM BTUM)	Operating	DecFeb	Mar-May	Jun-Aug	Sep-Nov	ì	daya	January 1	
3	•	NA	MA	Characteristics					Ì.		Ļ	
5	م				*	22	77	22	ž	7	22	166,160,000
	0				4	1	1					
Air Pol	utant Spec	Air Pollutant Specific Information										
			Constant	Control	Emission Rate	n Rate		15	Emission	Add, change,	•	

	Control	Control		Emission Rate		Emission	Add, change,	
Poflutant	equipment	equipment	Average (fbs/hr)	Madmum (Bahr)	Annual (tons/yr)	estmetton	or delete code	Concentration in gaser entiting at stack
paticulate mattter								grifstd ft
sulfur dioxide								ox fig mdd
nkrogen dloxide								on Aq mdd
carbon monoxide								by yd mgg
total NMNE HC (incl. those listed below)	740	98.0	0.08	0.24	0.34	2		on by we
n-Hexane	047	98.0	0.05	0.15	0.22	2		bbm by vc
								bbm by vc
								ppm by vc

Company Name	Name	DSM Copolymer, Inc.	Ę	Plant Location (# any) Adi	Addis, Le Addis Plant	Addis Pla	E		Date of Submittel	Septer	September 5, 1996	92
Source	Source IO number		Descriptive name of the equipment served by this stack or vent	stack or vent		Locator	Location of stack or vent (see Instructions on how to determine location of area sources)	nt (see brates)	ructions on h	os so		
	19-78		HEXANE SURGE TANK	E TANK		UTM zone no.	8 70.			[] 15 Hort [] 16 Ver	zordal Coordinal	[] 16 Horbrottal Coordinate <u>\$58,014</u> m E [] 16 Vardoal Coordinate <u>\$267,238</u> m N
Sta Dis Chara	Stack and Discharge Physical Characteristics	Height of stack above grade (ft)	Dlameter (R) or stack decherge area (R*)	Stack gas early family for the first state of the family f		gas flow at process correct of standard (R*)mikt)	Stack gas flow at process conditions not at standard (R')mbr) NA		Stack gas and velocity (IVs)	A .	For ta	For tanks, list volume (gals)
	Type of f	Type of fuel used and heat Input (see Instructions)	hetructions)		Pero	ent of ennus its through t	Percent of annual throughput of politikants through the emission point	1	Norm	Normal operating time of this point	Brne	Normel operating rate
		Type of Fuel	Heat Input (MM BTUIN)	Operating	Dec-Feb	Mar-May Jun-Aug		Sep-Nov	7 2	derre de	weeks	
. 6	•	NA +	NA.	Characteristics					ì			-
	4								•			

	Control	Control		Emission Rate		Emission	Add, change,	
Pollutant	equipment	equipment	Average (fbs/hr)	Meximum (fbs/hr)	Annuel (tons/yr)	estimation	or defete code	Concentration in gases exting at stack
paticulate mattter .								gefield ft ²
suffur dloxide								low yd mgg
nitrogen dioxide								pow kg mdd
carbon monoxide					3			lov yd mgq
total NM/NE HC (incl. those listed below)	740	87.8	0.40	0.80	1.75	5		low yd mgg
n-Hexane	047	87.6	0.24	0.48	1.05	2		y ppm by vol
								bow had madd
								by you by you

25

~

*

20

· 2

21

2

Air Pollutant Specific Information

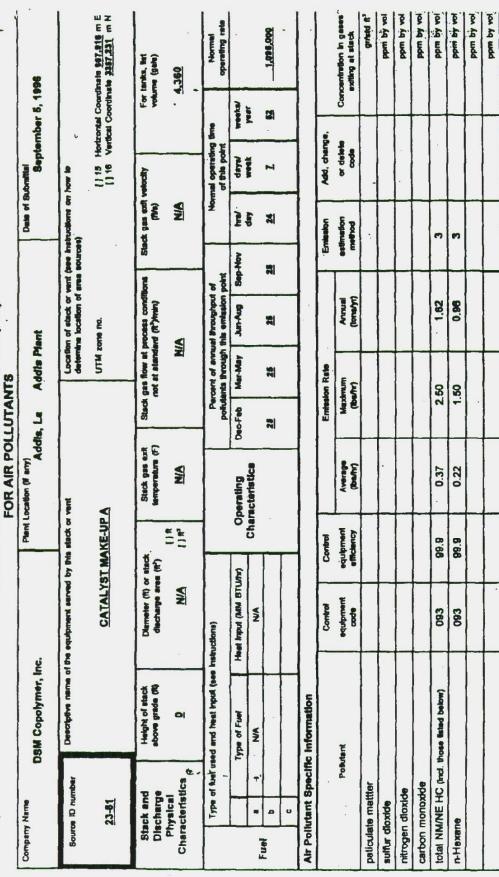
ه م

Company Name Source ID number												
Source ID number	DSM Copolymer, Inc.		Plant	Plant Location (if any) Add	Addls, Ls A	Addis Plant	ŧ	۵	Deta of Submittal	september 5, 1996	er 6, 199	96
	Descriptive name of t	Descriptive name of the equipment served by this stack or vent	r this stack or	vent	,	Location	Location of stack or verit (see instructions on how to determine location of area sources)	(see Instruction)	fons on how	ð	•	
20-80		LOW PRES	PRESSURE VENT	Ė		UTM zone no.	ne nū.		==	15 Horizor 16 Vertica	stat Coordinat	[] 15 Horizontal Coordinate <u>687,129</u> m E [] 16 Vartical Coordinate <u>1387,189</u> m N
Stack and Discharge	Height of stack above grade (ft)	Diameter (ft) or stack discharge area (ft ²)	1	Stack gas exit temperature (F)	Stack gas	gas flow at process com not at standard (It*)/min)	Stack gae flow at pracess conditions not at standard (ft²)/min)	Stack	Stack gas end velocity (f/vs)	2	For ta	For tanks, list volume (gals)
Physical Characteristics	col to.	V N		NIA		NA			N/A			N/A
Type of fue	Type of fuel used and heat input (see instructions)	nstructions)			Percen	of smus.	Percent of amusi throughput of pollutaris through this emission point		Normal of D	Normal operating time of this point		Normal operating rate
	Type of Fuel	Heat Input (MM BTU/hr)		_	Dec-Feb M	Mar-May	Jun-Aug Sep	Sep-Nov	7	days.) and	•
•	NA	MA	5	Characteristics					_		Į.	-
0					**	21	21	**	ম	7	쫾	418,666,228
υ										1		
Air Pollutant Specific Information	file Information	150		- 6			,	•				
		Control	Control		Errisalon Rata	Rate		Emission		Add, change,		
. G.	Poflutant	equipment	equipment	Average (fbaffer)	Maximum (Duftr)	E -	Arnual (tons/yr)	estimation		or delete code	Cong	Concentration in gases exiting at stack
paticulate matther												geriste ft
suffur dioxide												bbu pà no
nitrogen dioxide											-	pox Aq wdd
carbon monoxide											4	low by wol
total NM/NE HC (md. those listed below)	d. Brose fisted below)	848	96.8	0	1.00		0	2				box ful mdd
n-Hexane		97	98.8	0	1.00		0	2				bbm by vol
												low by wol
												pow by vol

[] 15 Hortzontal Coordinate 887.956 m E [] 16 Verdosi Coordinate 3367.209 m N Date of Submittel September 5, 1996 Location of stack or vent (see instructions on how to determine location of area sources) UTM zone no. Addls Plant Plant Location (ff arry)
Addis, La Descriptive name of the equipment served by this stack or vent TOLUENE STORAGE TANK DSM Copolymer, Inc. Source ID number 21-80 Company Name

For tanks, list volume (gals)	8,600	Normal operating rate	weeks/	_	62 107,142		
relocity		Normal operating time of this point	daye	_ [1		
Stack gas and velocity (fbts)	MA	Non	Jan.	•	치		
		l of point	Sep-Nov		콨		
rocess cond rd (R*)/min)		al throughou his emission	Jun-Aug		21		
Stack gas flow at process conditions not at standard (R*)min)	NA	Percent of annual throughput of pollutants through this emission point	Deo-Feb Mar-May Jun-Aug Sep-Nov		শ্ৰ		
		Pollu	DecFeb		和		
Stack gas auft temperature (F)	NA		Operating	Characteristics	1		
# -			0	ő			
Clameter (ft) or stack discharge eres (ft ²)	Y/N	Instructions)	Heat Input (MM BTUfhr)	NA NA			
Height of stack above grade (ft)	OI	Type of fuel used and heat input (see instructions)	Type of Fuel	NVA			Air Dollistant Greetiffe Information
Pu es	selles R	a of fuel to		7			Breein
Stack and Discharge	Physical Characteristics	Typ.		•	۵	Ü	Hadan
8 D	Che			1			9

	Control	Control		Emission Rate		Emission	Add, change,	·
Pollutant	equipment	equipment	Average (tbs/rr)	Meximum (fbs/hr)	Avresel (tors/yr)	estimation	or delete code	Concentration in gases exiting at stack
paticulate mettter				,				grield ft
sulfur dloxide								ox 4q mdd
nitrogen dioxide								pox kg mdd
carbon monoxide								por yd mdd
total NM/NE HC (Incl. those fisted below)	083	95.0	0.05	0.10	0.22	3		lov yd mqq
Toluené ,	083	95.0	0.05	0.10	0.22	3		ppm by voi
								pow by wot
								jox aq udd


Company Name		DSM Copolymer, Inc.		Plent	Plent Location (ff enry) Addis, La Adc	Addis, Le Ac	Addis Plant	=	8	Date of Submitted	Septemi	Beptember 5, 1996	9
Source ID number	number	Descriptive name of the equipment served by this stack of vert	he equipment served	by this stack o	r veril		Location	Location of stack or vent (see histructions on how to determine location of area sources)	(see instruct sources)	ons on hos	2		
22-80	2		GASOLINE	GASOLINE STORAGE TANK	TANK		UTM zone no.	gi g		==	16 Hortzo 18 Vertica	ntal Coordinal	[] 16 Hortzortal Coordinate 647,828 m E [] 16 Vertical Coordinate 3357,898 m N
Stack and Discharge	p e	Height of stack above grade (ft)	Diemeter (ft) or stack discharge area (ff)	1	Stack gas axil temperatura (F)	<u> </u>	gas flow at process corn not at standard (ft²)/min)	Stack gas flow at process conditions not at standard (17) frien)	Stack g	Stack gas exit velocity (f/s)	E	For tu	For tanks, list volume (gats)
Physical Characteristics	ristics	О	VIN		VAN		N			N/A		4	2,600
T.	pe of fluet by	Type of fluel based and heat Input (see Instructions)	structions)			Percen poliulents	it of ennual through th	Percent of annual throughput of pollutents through this emission point		Normel of the	Normal operating time of this point	ŧ	Normal operating rate
1_	_	Type of Fuel	Heat input (MM BTUhr)		-	Dec-Feb M	Mar-May	Jun-Aug Sep	Sep-Nov		P. T.	weeks/	
-	7	N.A	N/A	20	Characteristics				_				
•						**	21	**	**	a l	7	21	4200
U									1	1	1		
Air Polluta	nt Specifi	Air Pollutant Specific Information					,						
			Control	Control		Emission Rate	Rete		Emission		Add, change,	_	ì
	Poff	Politrant	apoo	equipment efficiency	Average (Beflit)	Maximum (beftit)	E -	Avruel (fore/yr)	method		or details code	S	Concentration in gases antiting at stack
paticulate mattler	attler												gristd R
sulfur dioxide	e e											-	ox 4g mdd
nitroden dioxide	xide											-	by the mag
carbon monoxide	voxide											-	ppm by vol
total NM/NE	HC (md.	total NM/NE HC (ind. those fisted below)	047, 094	6 66	0.01	0.03		90.0	3				ppm by vol
													low for mode
													ppm by vol
													low for mode
		The state of the s											

EMISSION INVENTORY QUESTIONNAIRE (EIQ) SINGLE POINT SOURCE/ AREA SOURCE

Date of Submittel September 5, 1996	i fretructions on how to ross)	[] 15 Hortzontal Coordinate 667,921 m E- [] 16 Vartical Coordinate 3367,224 m N-
ddis Plant	Location of stack or veril (see instructions on how to determine location of area sources)	UTM zone no.
Plant Location (if smy) Addis, La Addis Plant	stack or vent	KE-UP B
DSM Copolymer, Inc.	Descriptive name of the equipment served by this stack or vent	CATALYST MAKE-UP B
Company Name	Source 10 number	24-81

For lanks, list volume (gals)

Stack gas extl velocity (fMs)

Stack gas flow at process conditions not at standard (R*)/min)

Stack gas exit temperature (F)

Diameter (ft) or stack discharge area (ft²)

Height of stack above grade (ft) 4,360

S

M

§

===

S N

0

Stack and Discharge Physical Characterfatics

	Type	Type of furtheed and heet input (see instructions)	re instructions)			political politi	roant of airris ants through t	Percent of arrusel throughput of pollutants through this emission point	polnt	Non	Normal operating time of this point	game.	Normal operating rate
,		Type of Fuel	Heat Input (MM E	BTUArt)	Operating	Dec-Feb	Mar-May	Dec-Fab Mar-May Jun-Aug Sep-Nov	Sep-Nov	Nag day	day.	Veer .	٠
	-	+ WA	N/A		Characteristics								- 1
E C	•					和	21	ล	%	*	7	21	1,076,000
	o												
Alr Po	Hutant	Air Pollutant Specific Information											
			Control	Control	ifrof	Emiss	Emission Rate		Em	Emission	Add, change,	i	

	Control	Confrol		Emission Rate		Emission	Add, change,	
Pollutani	equipment	equipment	Average (fbs/fr/)	Meximum (befn)	Annual (lona/yr)	estimation	or delete code	Concentration in gases exiting at stack
naticulate matter								gritsid It?
author directle								low yd mog
ablock cases							,	bow td mod
POXOD INDOM								low yd meg
Carbon monoxide	500	0 00	75.0	250	1.62	3		lov yd mgg
total NM/NE HC (ind. those listed below)	280	8.00	500	7 60	80.0	-		lov yd mpg
n-Hexane	083	8.88	0.22	8	8			les of man
								low by wor
				The second secon				

,													
Company Name		DSM Copolymer, Inc.		Pale	Plant Location (if any) Adi	Addis, La	Addis Plant	I		Deta of Submittal	Septer	September 5, 1996	96
Sour	Source ID number	Descriptive name of the equipment served by this stack or veril	he equipment serve	d by this stack o	or word		Locatio	Location of stack or vent (see instructions on how to determine location of area ecuroes)	it (see histries)	uctions on h	of to		·
	26-81		CATALYS	CATALYST MAKE-UP TLA A	₽		5	UTM zone no.			[] 15 Host [] 16 Vert	contail Coord Ical Coordin	[] 15 Horizonial Coordinate \$37,374 m E [] 16 Vertical Coordinate \$347,255 m N
Sta	Stack and Discharge	Height of stack stove grade (ft)	Diameter (10) or stack discharge area (17)		Stack gas exit temperature (F)		gas flow at process corn not at standard (ft²)/mfr.)	Stack gas flow at process conditions not at standard (R*)min)	-	Stack gas east velocity (NVs)	4ppe	For	For tanks, list volume (gals)
Chan	Characteristics R	oj	NA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A		Y/V	≪ I		SN SN			4,360
	Type of fuel to	Type of fuel treed and heat Input (see instructions)	structions)	_		Perc	ant of annu-	Percent of annual throughput of pollutants through this emission point	,	Norm	Normal operating time of this point	Brue	Normal operating rate
		Type of Fuel	Heat tripot (MM BTI	STUMM	Operating	Dec-Feb Mar-May	Mar-May	Jun-Aug S	Sep-Nov	1	days	weeks/	
- Land	- 1	NA	WA	₹	Characteristics			-	_	À.	N O	ii o	
	q					21	21	*1	27	**	7	25	1,096,000
	υ								_				•
Air Polt	utant Specifi	Air Pollutant Specific Information											
			Combol	Control		, Emission Rate	on Rate		Emission	- Figure	Add, change,	-	
	Pollutant	Abrit	equipment	equipment	Average (fbs/fit)	Meximum (the/hr)	F 5	Annual (fons/yr)	estmeton	P P P P P P P P P P P P P P P P P P P	or delete	8	Concentration in gases autimg at stack
paticulat	paticulate mattler												gritted R
sulfur dłoxide	oxide												pow by vol
nitrogen dioxide	dioxide										·		pow by wol
carbon	carbon monoxide												ppm by vol
total NN	INE HC (md. 1	total NM/NE HC (Ind. these listed below)	093	6.66	0.37	2.50	90	1.62	. 3				pow by vol
n-Hexane			093	88.8	0.22	1.50	20	96.0	3				ppm by vol
													ppm by vol
													pow by wol

SINGLE POINT SOURCE AREA SOURCE EMISSION INVENTORY QUESTIONNAIRE (EIQ)

	DSM Copolymer, Inc.	ú	Para	Plant Location (ff any) Acid	Addls, La	Addis Plant	ınt		Dete of Submittee	Septem	September 5, 1996	96
Source ID mumber	Descriptive name of the equipment ser	the equipment served	rved by this stack or vent	r vant		Locatio	Location of stack or veril (see instructions on how to determine location of enes sources)	((see Instru a sources)	offers on ho	d to		
26-81		CATALYST MAKE-UP TLA B	MAKE-UP T	8VI		UTM zone no				[]15 Hortze []18 Vertic	ortal Coordina	Hortzontal Coordinate <u>867,877</u> m E Vertical Coordinate <u>3157,261</u> m N
Stack and Discharge	Height of stack above grade (ft)	Clameter (ft) or stack discharge area (ft)		Stack gas exit temperature (F)		gas flow at process cond not at standard (It*)/min)	Stack gas flow at process conditions not at standard (It*)/min)		Stack gas exit valocity (fVs)	4	For t	For tanks, Rst volume (gais)
Physical Characteristics	te	NA	= = =	YN.		VN	V		N/A		4 1	4,360
Type of A	Type of fuel weed and heat input (see instructions)	hstructions)			Per	cent of arra	Percent of armusi throughput of pollutarits through this emission point	E	Nomel	Normal operating time of this point		Normel operating rate
	Type of Fuel	Heet Input (MM BTUhn)	Т	Operating	DecFeb	Mar-May	Jun-Aug Se	Sep-Nov	1	è i	weeks.	
•	A NA	NA	₹ 	Characteristics					ì		. :	200
Puel b				÷	21	2	**	21	#	7	2	1,000,000
v								1	1			
Air Pollutant Sp	Air Pollutant Specific Information								-		-	
		Control	Control		Emiss	Emission Rate		Embesion	-	Add, change,		
	Pollutant	equipment	equipment efficiency	Average (Bodu)	A G	Maximum (Iba/hr)	Armuni (tons/yr)	portern portern	pou	or detete	5	Concentration in gases exiting at stack
paticulate matter												griveto ff
sulfur dioxide								•			+	bow by wol
ntrogen dioxide											+	box (q udd
carbon monoxide											-	low (d midd
total NM/NE HC	Initial NM/NE HC (not those listed below)	083	8.66	0.37	2	2.50	1.62	3			-	low by wor
Mayana		083	8.66	0.22	-	1.50	0.96	3				pow fa wod
I-DOXBING												box fa mdd
						1		-			-	3

Company Name	DSM Copolymer, Inc.	Plant Location (if any) Addits, La Add	Addis, La Addis Plant	Dete of Submitted September 5, 1996
Source ID number	Descriptive name of the equipment served by this stack or vent	stack or veril	Location of stack or vent (see instructions on how to determine location of eve sources)	audions on how to

UTM zone no. [] 16 Hodzontal Coordinate 887,822 m E [] 16 Vertical Coordinate 2387,237 m N	s sold Stack gas flow at process conditions Stack gas sold velocity For tente, test (Ne) root at standard (th*)/min) NA NA 800	Present of second discount of the Married Assertation (first
A.O. MAKE-UP TANK	Height of stack Diameter (ft) or stack Stack gass exit above grade (ft) discharge area (ft) [] if N/A	The second secon
27-81	Stack and Heigh Blacharge Physical Characteristics	There of 6-44 second

	edk:	Type of fuel used and heat apput (see instructions)	Frethictions		poffut	Percent of annual proughput of pollutants through this emission point	ris emission	point	Month	of this point		operating rate
		Type of Fuel	Heat Input (AM BTUAn)	Operating	Dec-Feb	Deo-Feb Mer-May Jun-Aug Sep-Nov	Jun-Aug	Sep-Nov	Jan 1	days	wrooks/	•
E .	•	+ NVA	NA	Characteristics					•	į	L	
	٥				21	**	**	21	ZI.	7	껰	88,027
	٥	Ý										
Air Polt	utant	Air Poltutant Specific Information	4									
		The state of the s										

	Control	Control		Emission Rate		Emission	Add, change,	
Pollutant	edulpment	equipment	Average (fbe/ftr)	Maximum (Braftir)	Armusi (tons/yr)	estimation	or delete code	Concentration in gases ending at stack
paticulate mattter							,	gnistd ft
suifur diaxide								on hig med
nitrogen dioxide								bhu by vo
carbon monoxide								on Ag modd
total NM/NE HC (ind. those listed below)	083	0.88	0.02	0.26	0.07	3		on Ag undd
Toluene	093	0.66	0.02	0.26	0.07	3		ov yd mqq
								ppm by vol
								pow for model

September 5, 1996 Date of Bubmitted **Addis Plant** Addls, La Plant Location (if any) DSM Copolymer, Inc.

[] 15 Horizontal Coordinate 667,826 m E [] 16 Vertical Coordinate 3367,227 m N Location of stack or veril (see instructions on how to determine location of area sources) UTM zone no. Descriptive name of the equipment served by this stack or vent MI MAKE-UP TANK A Source ID number 28-81 Company Name

For tanks, fist volume (gals)	Normal operating rate	
200	time	year year
relocity	Normal operating time of this point	daya' week
Stack gae and velocity (ff/s)	Non	ž Š
	t of point	Sep-Nov
Sack gas flow at process conditions not at standard (It*)/min) N.A.	Percent of annual throughput of pollutants through the emission point	Dec-Feb Mar-May Jun-Aug Sep-Nov
pas flow at pro	pent of annuants	Mar-May
	Per	Dec-Feb
Stack gas and lemperature (F)		Operating Characteristics
() () () () ()		
Diameter (R) or stack diacherge area (R')	instructions)	Heat Input (MM BTUArr)
Height of stack above grade (ft)	Type of fuel-used and heat input (see instructions)	Type of Fuel
Stack and Discharge Physical Characteristics	Type of fuel	
Stac Disc Phy Characl		1-1-

2

지

2

7

2

100

Fuel

Air Pollutant Specific Information								
	Control	Control		Emission Rate	•	Emission	Add, change,	•
Pullutant	equipment abox	equipment	Average (BeAhr)	Maximum (De/hr)	Arrwal (fors/yr)	estimation	or delete code	Concentration in gases extling at stack
paticulate mattler								grield ft*
sulfur dioxide								lov 1d mpg
nitrogen dioxide								lov yd mgg
carbon monoxide								lov yd mog
total NM/NE HC (md. those listed below)	093	50.0	0.05	5.00	0.22	3		lov vd mqq
п-Нехапе	083	50.0	0.03	3.00	0.13	3		lov yd mgg
								ppm by vol
								por yd mgg

[] 15 Horizordal Coordinate \$55,228 m E [] 16 Vertical Coordinate \$157,219 m N September 5, 1996 Date of Submitted Location of stack or varil (see Instructions on how to determine location of area sources) UTM zone no. Addis Plent Plant Location (if any)
Addis, La Descriptive name of the equipment served by this stack or vent ALKYL STORAGE TANK DSM Copolymer, Inc. Source ID number 29-81 Company Name

	P I	Normal operating rate	-		1,880,199	-		
For tanks, list volume (gats)	17,100		weekt/ veer					-
alocky		Nomel operating this of this point	daya		7			
Stack gas exit velocity (IAN)	N/A	Nom	3 5	ì	지			-
		od Politi	Sep-Nov		21			
Stack gas flow at process conditions not at standard (It*)/min)	-	Percent of annual throughput of pollutents through this emission point	Jun-Aug		2			
gas flow at process con not at standard (R*)/min)	N/A	cent of annual intertheough	Mar-May		13			
Stack		Polluta	DecFeb		Ħ			
Stack gas exiting (F)	NIA			Characteristics				
	=======================================		5					
Diameter (R) or stack discharge area (R ²)	N/A	Jone)	Heat Input (MM STURY)	NA				
		nee thatruc	Heat					
Height of stack above grade (ft)	Ot	Type of fuel used and heat Input (see Instructions)	Type of Fuel	N/A			Air Pollutant Specific Information	
pui eßi	fatics A	se of fluel up		Ŧ			it Specifi	
Stack and Discharge	Physical Characteristics	Ty.	<u></u>	-	2	٥	Air Pollutan	

٠	Control	Control		Emission Rate		Emission	_	
Politiant	equipment	equipment	Average (Berhir)	Meximum (be/m)	Armusi (fons/yr)	potpeu	or dalete code	Concentration in gases soding at stock
peticulate matter								gritish m
sulfur dioxide								on Aq madd
nitrogen dioxide								low for midd
carbon monaxide								low for model
total NMNE HC (Incl. those listed below)	093	0.66	79.0	5.00	2.48	6		low fol midd
n-Hexane	093	0.66	0.29	3.00	1.27	3	`	low fol modd
								low yd madd
								ppm by vo

Section 10 number Description ration of the evolutionary section Section of the secultionary section Section of the section of the section of the section of the section of section of the section of	Company Name	· ·	DSM Copolymer, Inc.	ner, Inc.			Plant Location (# any)	n (ff erry)	Addis, La	Addis Plant	lant		2	Date of Submitta September	ses of Submittel September 4, 1996
Diameter (TO or sheek Shack gas size	Source	10 number	Descriptive r	name of the		d by this	tack or vent		3 %	cation of stack territie location	s or verit (see	Instruction: ross)	or how to		
1 1 1 1 1 1 1 1 1 1	58	1961			ALKYL	BLEND	ANK		5	TM Zune no.	•	==	15 Hertzon 18 Vertical	Seordinate Coordinate	968,038 m E
Central Control Contro	Stack Dischu Physi Characte	and arge kcal kcal	Height of stack above grade (11)	Dier	charge area (R?)	10 C	tack gas exit mperature (F)		t at standard (1	ss conditions t')/mån)	Stacky	(rat)		For tunks volume (g	# (g)
Heat Input (IAM BTUhr Operating Dec-Feb Mar-Mary Jun-Aug Sep-Nov hru day week your Characteristics 28 28 28 28 28 2 2 2 2 2 2 2 2 2 2 2 2		Type of fue	used and heat Inp	ost (see lifet	ructions)				ercent of annu-	il throughput		Norm	el operating		Normal
NA		-						Ž.	Intents through	This emission	E		or one poem	1	
MA Characteristics 26 26 26 21 2			Type of Fuel	Heat Inpu		o	erating	Dec-Feb		Jun-Aug	Sep-Nov	ì	2 1		
Control Control Entission Rate Emission Add, change, and activation Control Charter)		-1	NA		NA		Icteristics				:		,	:	507 000 7
Centrol Centrol Entission Rate Entission Add, change, darkmum Annual code Entission Add, change, or delate equipment ediciency (Barhr) (Barhr) (Barhr) (Constyr) Annual code and code no 093 99.0 0.49 5.00 2.15 3 no 093 99.0 0.29 3.00 1.27 3	5 2	۵						2	**	8	1	ş	7	1	TA CAMPAIN
Centrol Control Emission Rate Emission Rate Emission Add, change, darkmum Annual An											1			1	
Centrol Centrol Entission Rate Entission Add, change, addition equipment equipment sode Average (Barkhr) Markmum (Barkhr) Annual (Barkhr) Annual or delate code node (Barkhr) (Barkhr) (Barkhr) (Barkhr) (Barkhr) Annual or delate node (Barkhr) (Barkhr) (Barkhr) (Barkhr) (Barkhr) Annual or delate node (Barkhr) (Barkhr) (Barkhr) (Barkhr) (Barkhr) node (Barkhr) (Barkhr) (Barkhr) (Barkhr) (Barkhr) (Barkhr) node (Barkhr)	Air Pollut	tant Spe	offic information	E											
Pellutant equipment equipment (Buffer) (thefter) (thefte					Centrol	Contro		ā	nission Rate		Embe	_	dd, change,		
(incl. three Field below) 093 99:0 0.49 5:00 2.15 (ncl. three Field below) 093 99:0 0.29 3:00 1.27		۵	Pollutard		equipment and a	equipme		urage urhir)	Maximum (Be/hr)	Annual (tensiyr)	methe	rog.	or delete code	Concen	Concentration in gases exiting at stack
(finel three lated below) 093 99:0 0.49 5:00 2.15 093 99:0 0.29 3:00 1.27	naticulate	matther										`			gristed ft ²
(Incl. these leted below) 093 99.0 0.49 5.00 2.15 (act. these leted below) 093 99.0 0.29 3.00 1.27	suffur dio	xide													on 4q mdd
(Incl. three leted below) 093 99:0 0.49 5:00 2.15 (Incl. three leted below) 093 99:0 0.29 3:00 1.27	na production	diovide													pow by vol
VE HC (Incl. these listed below) 093 99.0 0.49 5.00 2.15	TIME OF THE PARTY	DONO.						-							ppm by vol
093 99.0 0.29 3.00 1.27	Carbon III	NE LO A	ded help lated help	3	093	99.0	-	49	5.00	2.15	3				ppm by vol
			The state of the s		083	0.66		29	3.00	1.27	3				pow by vol
	NIEXELL-II														ppm by vol
															ppm by vol

					FOR AIR PULLUIANIS	מונים	CINC						
Company Name		DSM Copolymer, Inc.	Inc.		Plant Location (F any)	(Aus a)	Addls, La	Addis Plant	T .			Date of Submittel September	ste of Submittel September 4, 1996
Source 10 number	number	Descriptive name	Descriptive name of the equipment served by this stack or vent	ved by this a	itack or vent		24	Location of stack or vent (see instructions on how to determine location of area sources)	or vert (see of gres sou	Instruction ress)	s on how to		
. 31-81	ц		HEXANI	HEXANE TANK O.A. #1	A. FI			UTIA zone no.		55	[] 15 Horizon [] 16 Veribla	ital Coordinal	Hortzontal Coordinate <u>868.110</u> m E. Varitzal Coordinate <u>1387.358</u> m N
Stack and Discharge Physical		Height of stack above grade (ft)	Clarineter (R) or stack discharge area (R*)	E 1	Stack gas eak semperature (F)	Stack gar	Stack gas flow at process conditions not at standard (R?/min) MAA.	es conditions (')/min)	Stack velocky	Stack gas exit selly (TVs)		For tanks, list volume (gals)	als)
Characteristics	stics.	ol .	NA.	<u>.</u>			9		-	NA			1
r,	pe of firet use	Type of fuel used and heat input (see instructions) ${\vec l}$	ee Instructions)			A Ago	and of annutants	Percent of annual throughput of pollutants through this emission point	¥	Non	Normal operating time of this point	time	Normal operating rate
	Type	Type of Fuel Hea	Heat Input (MM BTUffur	ő	Operating	Dec-Feb	Mar-May	Jun-Aug	Sep-Nov	F	deyrs/	weeks	
-		NA	NA	Char	Characteristics					(a)		Ì	
90				,		22	74	2	*	2	7	2	132.876.899
۰													
Air Pollutar	nt Specific	Air Pollutant Specific Information											
			Control	Control		Em	Emission Rate		Emission	-	Add, change,		
	Pollutant	Į.	edulpment	equipment	Average y (fbehr)		Manieruen (fba/hr)	Annual (Tons/yr)	method	e de	or delete code	Concen	Concentration in gases exiting at stack
paticulate mattter	attter				_	-							gr/std ft ²
suffur dloxide	9												ppm by vol
nitrogen dioxide	xide												ppm by vol
carbon monoxide	oxide												lov yd mqq
total NMANE	HC (Incl. th	total NMME HC (Incl. those Rated below)	093	99.0	0.27		0.54	1.18	5				low the mod
n-Hexane			063	99.0	0.16		0.32	0.71	5				ton fig mod
													lov yd mqq
										-			bbm by vol

					22 201	TOR AIR TOLLO IAIR IS	2						
Company Name		DSM Copolymer, Inc.	r, Inc.		Plant Location (if any)		Addls, La	Addis Plant	lant		3	Date of Submitte September	ste of Submittel September 4, 1996
Source II	Source 1D number	Descriptive name of the eq	is of the equipment served by this stack or verif	ad by this s	tack or verif		3.5	Location of stack or vent (see instructions on how to determine location of area sources)	or veril (see	Instructions rees)	s on how to		
32	32-81		ADDIS	ADDIS PLANĪ FLARE	ARE		5	UTM rone no.	•	==	15 Horbord 16 Vertical	tal Coordinal Coordinate	() 15 Horbortal Coordinate \$15,000 m E () 16 Vertical Coordinate \$157,513 m N
Stack and Discharge		Height of stack above grade (R)	Diameter (ft) or stack discharge area (ft)		Stack gas exit temperature (F)	Stack gas	Stack gas flow at process conditions not at standard (R)/min)	ss cendilions ")/min)	Stack velocity	Stack ges exit schy (TVs)		For tanks, Bat volume (gels)	1 (g
Physical Characteristics	ristics	180	115	E 2	1,200		MA		1	N/A		N/N	
	ype of fael us	Type of fuel used and freet input (see instructions)	see instructions)	L		Pe Pe	Percent of annual throughput of politication brough this emission point	el throughput o	oht.	Morm	Normal operating time of this point	į	Normal operating rate
	Type	Type of Fuel H	Heat input (MM BTU/hr	ď	Operating	Dec-Feb	Mer-May	Jun-Aug	Sep-Nov	Jan 1	days	See 1	
Ι."		NA NA	NA	Char	Characteristics					•		. :	
	۵					12	2	**	77	2	7	Z	17.04.00
	B												
Air Pollut	ant Specific	Air Pollutant Specific Information											
			Control	Control	_	Em	Emission Rate		Emission		Add, change,	_	
	Politiant	fant	adoperation	equipment	nt Average	-	Maximum (De/ht)	Annuel (tensiyr)	- estimation portien	L por	or delete cede	Concen	Concentration in gases exiting at stack
nationate matther	matther		000	0	-	-	0.09	0.04	3				gristed ft ²
suffer doxide	ide		000	0	0.01	-	0.03	0.04	3				ppm by vol
nitrogen dioxide	ioxide		000	0	0.14	4	0.28	0.61	9				low for mod
carbon monoxide	noxide		000	0	0.01	_	0.20	0.04	3				ppm by vol
total NM/	IE HC (het.	total NM/NE HC (Inc.), those listed below)	024	6.66	0.14	4	12.00	0.61	2				ppm by vol
													ppm by vol
										_			ppm by vol
													ppm by vol
_					The same of the sa		The same of the sa						

Chargety Name DSM Copolymer, Inc. Displayed arise of the acquinent served by this stand or ward in the cealer of the continue and the co	Company Name													
Control Cont	of the state of th	DSM Copolyn	ner, Inc.		Plen	t Location (ff a		Idis, La	Addls Pi	ant		2	September 4	September 4, 1996
Diameter (7) or stack discuss and filters are filtred for the		F	name of the equipme	bernes he	by this stack	or went		3 \$	ation of stack mine location	or vent (see	Instructions ross)	on how to		
Control Contro	13-81	·	щ	N RECO	VERY JEI			5	A zone ne.		i=	15 Hertzont 18 Vertical	al Coordinate,	2567.248 m N
(see instructions) (characteristics) (char	Stack and Discharge	Height of stack above grade (ft)	Dismeter (R) discharge at	or stack	_	-	Stack gas fit	w at process	s conditions (Anth)	Stack	ges exit		For tanks, list volume (gals)	ale)
test instructions) Operating Characteristics Characteristics Control Control Control Code Code Code Code Code Code Code Code	Physical Characteristics	5 1	VIX.			212		NIA			N/A		AM	
NA Characteristics	Type of fu	iei used and heat Inp	rut (see instructions)				Perci	ent of annual to through th	I throughput is	olnt	Morm	al operating t	.	Normel operating rate
N/A Characteristics 26 28 28 26 24 1 9 Control Control Emission Rate Emission Rate Annual Emission Add, change Add, change a delete code efficiency (Bahr) (B	E	Type of Fuel	Heat hout (MM B.	TUME	Operat		Dec-Feb	Mar-May	Jun-Aug	Sep-Nov	Je .	days/	weeks	
Control Control Emission Rate Control	1_	NA	NA.	T	Characte					,	Á P			
Control Control Emission Rate Emission Add, change, equipment equipment Average Maximum Annual mathod code code of their code of	_						#	7	2	Ħ	2	4	Z.	
Control Control Emission Rate Emission Add, change, eathnesten Add, change, code efficiency (tbafny) (8											1		
Conficial Control Emission Rate Emission Add, change, equipment equipment equipment (Tba/hr)	Air Pollutant Spe	ecific informatio									ł		-	
Polititani equipment equipment Average Maximum Azinusi estimation or delete code code (Ibarhar) (Ibarhar) (Ibarhar) (Ibarhar) masthod code code (Ibarhar) (I				Pol	Control		Emiss	den Rate		E .	-	.dd, change,		
Thei. those Raised below() 073 89:0 0.24 0.57 1.04		Polluteral	dabe		equipment	Average (fbs/fit)	Me	ximum se/hr)	(nonalyr)	mitte	Logi	or delete code	Conce	Concentration in gasers exiting at stack
Theil those Mated below) 073 89.0 0.24 0.57 1.04	paticulate matter										+		1	DEVISION IN
Incl. those fished below; 073 89:0 0.24 0.57 1.04	sulfur dioxide									+	+		-	Total All mode
Tricl. those Raised below() 073 89.0 0.24 0.57 1.04	nitrogen dloxide										+			or all more
073 99.0 0.24 0.57 1.04	carbon monoxide						-				+		-	nom by vo
	total NM/NE HC	(Incl. those listed bel		2	99.0	0.24	+	0.57	2		+		+	box fo mod
				+			+			-	-		-	ppm by vol
							-						-	low yd mod

	DSM Copolymer, Inc.	mer, Inc.		Plan	Plant Location (If any)		Addis, La	Addis Plant	ant			Osts of Submitts September	ste of Submittel September 4, 1996
Source IO number		Descriptive name of the equipment served by this stack or vant	berres men	by this stack	or vant		3 %	Location of stack or vent (see instructions on how to determine location of area sources)	or vent (see	e instruction arces)	s on how to		
34-81		EINISH	EINISHING LINE (North) (69 Dryel)	(North) (F	Dryer		5	UTM zone no.		5-	15 Horbro 1 16 Vertica	ntal Coordinals	[] 15 Horizontal Coordinate 197,542 m E [] 16 Vartical Coordinate 1157,193 m N
Stack and Discharge	Height of stack above grade (R)	Diameter (ft) or stack discharge eres (ft²)	() or stack sees (R ²)	-	Stack gas exit	Stack gas flow at process conditions not at standard (It')/min)	ges flow at process corv not at standard (R*)/min)	s conditions (min)	Stack	Stack gas ext		For tanks, list volume (gels)	, flet gefs)
Physical Characteristics	81	2.0	E C .		120		10,000	٠		a		NIA	
Type of f	Type of fuel used and heat input (see instructions)	put (see instruction	-	,		Perce	nt of annua a through th	Percent of annual throughput of pollutants through this emission point	Ĩ	Nor	Normal operating time of this point	thm.	Normel operating rate
	Type of Fuel	Heat Input (MM)	MM BTUM	Operating	_	Dec-Feb	Mar-May	Jun-Aug	Sep-Nov	Ja.a.	days/	weeks	
÷,	NA.	NA.		Characteristics	istics					day	Ĭ	į	
p p						22	2	52	#	72	7	a	00'000'99
v													
Air Pollutant Sp	Air Poliutant Specific Information	Ē											
		ð	Control	Control		Embash	Emission Rate		Emission		Add, change,	-	
	Pollutant	- S	equipment e-	equipment	Average (fbs/hr)	Mexit	Meximum (bs/hr)	Annual (forsalyr)	nether	r po	er delete code	Conce	Concentration in gases exiting at stack
paticulate mattter		8	100	0	0.13	0.4	0.40	0.59	3				gr/std ft
suffur dioxide													fapm by vol
nitrogen dioxide													low frd mdd
carbon monoxide													ppm by vol
total NM/NE HC	total NM/NE HC (not, those listed below)		046	99.7	11.30	42.	42.24	49.47	2				pow by wol
n-Hexane		٥	046	7.66	8.78	25.	25.34	29.68					ppm by vol
Томепв		Ŏ	046	99.7	2.26	60	8.45	9.89					ppm by vol
													ppm by vol

														-
Company Nume	DSM Copolymer, Inc.	mer, Inc.		File	Plant Location (If sny)		Addis, La	Addis Plant	ant			Date of Submitted September	september 4, 1996 September 4, 1996	
Source ID number	Г	Descriptive name of the equipment served by this stack or vent	nem served	by this stack	or verit		3.4	Location of stack or veril (see instructions on how to determine location of area sources)	or went (see	betruction ross)	e on how to	•		_
35-81	***************************************	EINISH	ING LINE	EINISHING LINE (South) (FB Dryer)	8 Dryer)		5.	UTM zone no.		22	[] 15 Horbon [] 16 Vertical	tal Coordinate Coordinate	Hortzental Coordinate \$52,858 m E Vertical Coordinate \$157,159 m N	
Stack and Discharge	Height of stack above grade (1)	Dismeter (ft) or staci		-	Stack gas out 8	Stack gas flow at process conditions not at standard (R*)/min)	ges flow at process come not at standard (R*)/min)	ymen)	stack velocity	Stack gas ext oby (79's)		For tanks, fist volume (gals)	. Het galb.)	
Physical Characteristics	SI	270			120		10,000		,	3		N/A		
Type of	Type of fuel used and heat imput (see instructions)	out (see Instruction	•			Perce	nt of annuals to through the	Percent of annual throughput of pollutants through the emission point	obst	Могт	Normal operating time of this point	time	Normal operating rate	Contraction of
-	Type of Fuel	Heat Input (MM BTU/hr	BTUA	Operating		Dec-Feb	Mar-May	Jun-Aug	Sep-Nov	Jan 1	daya	weeks/	,	
•		V.		Characteristics	ristics					day	į	Š.		
e p						R	2	**	**	21	7	2	000'000'99	
υ														
Air Pollutant Sp	Air Pollutant Specific Information	Ę				•								
		8	Central	Centrol		Emissk	Emission Rate		Emission	-	Add, change,			
	Pollutant	7 6	aquipment	equipment	Average (Berhir)	XeX	Maximum (Barhe)	Annual (formity)	nether	rog po	er delete code	Concen	Concentration in gases exiting at stack	
paticulate mattter	H.		100	0.66	0.13	0	0.40	0.59	3				gristd ft ^a	
suffur dloxide								·					bow by wel	
nitrogen dioxide												-	box fq mdd	
carbon monoxide													low for mode	
total NM/NE HC	total NM/NE HC (not. those fleted below)		948	7.66	11.30	42	42.24	49.47	2				bbm by vol	
n-Hexane			046	7.66	6.78	25	25.34	29.68					pow by wad	
Toluene			046	7.66	226	80	8.45	9.89					pow by vol	
													ppm by vol	

Data of Submittal September 4, 1996

IRCE VE (EIQ)	Addis Plant
SINGLE POINT SOURCE/ AREA SOURCE EMISSION INVENTORY QUESTIONNAIRE (EIQ) FOR AIR POLLUTANTS	Plant Location (If em) Addis, La Addis Plant
SINGLE	DSM Copolymer, Inc.

Company Name

								-				The second secon		
Source	Source ID number		Descriptive name of the equipment served by this stack or vent	ipment serve	d by this	stack or vent		3.8	Location of stack or vent (see instructions on how to determine location of area sources)	or veril (see	Instructions ross)	on how to		
(O)	36-61		3,	OLEUM STORAGE TANK	TORAG	TANK		5	UTM zone no.		11 ts	5 Herizonti 16 Vertical	at Coordinate Ceordinate	Horizontal Coordinate <u>\$55,095</u> m E. Vertical Ceordinate <u>\$357,279</u> m N
Stack and Discharge	arge	Height of stack above grade (R)	Dismeter	Dismeter (R) or stack discharge area (R ²)		Stack gas ext temperature (F)	Stack g	Stack gas flow at process conditions not at standard (R)/min)	es conditions t')/min)	Stack	Stack gas ext ocity (IVs)		For tanks, list volume (gals)	H. (di
Physical Characteristics R	eristics R	Ol		N/A	- T	NIA		NIA	F		NIA		12.000	ol ol
	Type of fue	Type of fuel used and heat input (see instructions)	ut (see Instructi	lons)			8	Percent of annual throughput of bothstants through this emission point	al throughpul o	F S	Norma	Normal operating time of this point	•	Normal operating rate
•	-	Town of Pinel	Heat Input (M	MM BTUM	ō	Operating	Dec-Feb	Mar-May	Jun-Aug	Bep-Nov	3	days	weeks/	
	-	and to add			Char	Characteristics					Ì		L	
Fuel	-\ -\ 2	NA.	2				27	27	22	72	**	7	2	4.250.000
	0													
Air Poll	stant Spe	Air Pollutant Specific Information	E								ŀ			
				Centrol	Control	_	W	Emission Rate		Emission	70-	Add, change.		
	•	Pollutant	<u>.</u>	equipment	equipment	ent Average	9 5	Meximum (fbs/hr)	Armusi (torns/yr)	nether		or delete code	Cencer	Concentration in gases exiting at stack
			+			+								grivated ft*
paticula	paticulate matter		+				+							pow for mod
suffur dloxide	oxide						+			+	+		-	ppm by vol
nitrogen	nitrogen dloxide					+	+			+	+			low yd mdd
carbon	carbon monoxide						+			+	+		-	lov yd meg
total NN	INE HC	total NM/NE HC (net. those listed below)	(ma)							-	+		+	lov vd mod
suffur trioxide	oxide			013	90.0	+	0.003	0.10	0.014	1	-			low by wel
							+			-	-		+	ppm by vol

